Publications

Export 156 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Jacobs, L. L., Polcyn M. J., Mateus O., Schulp A. S., & Neto A. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121–121., Number 3 Abstract
n/a
Martins, R. M. S., Beckmann F., Castanhinha R., Mateus O., & Pranzas P. K. (2011).  Dinosaur and crocodile fossils from the mesozoic of Portugal: Neutron tomography and synchrotron-radiation based micro-computed tomography. Materials Research Society Symposium Proceedings. 1319, 319-332. Abstract
n/a
Marzola, M., Mateus O., Schulp A., Jacobs L., Polcyn M., & Pervov V. (2014).  Early Cretaceous tracks of a large mammaliamorph, a crocodylomorph, and dinosaurs from an Angolan diamond mine. Journal of Vertebrate Paleontology, Program and Abstracts, 2014. 181.marzola_et_al_2014._cretaceous_tracks_mammaliamorph_a_crocodilomorph_angolan_diamond_mine.pdf
Adams, T. L., Polcyn M. J., Mateus O., Winkler D. A., & Jacobs L. L. (2011).  First occurrence of the long-snouted crocodyliform Terminonaris (Pholidosauridae) from the Woodbine Formation (Cenomanian) of Texas. Journal of Vertebrate Paleontology. 31, 712-716., Jan: So Methodist Univ, Univ Nova Lisboa Abstractadams_polcyn_mateus_et_al_2011_terminonaris_crocodile_pholidosauridae.pdf

n/a

Adams, T. L., Polcyn M. J., Mateus O., Winkler D. A., & Jacobs L. L. (2011).  First occurrence of the long-snouted crocodyliform Terminonaris (Pholidosauridae) from the Woodbine Formation (Cenomanian) of Texas. Journal of Vertebrate Paleontology. 31, 712-716., Number 3 Abstract
n/a
Strganac, C., Jacobs L., Polcyn M., Mateus O., Myers T., Araújo R., Fergunson K. M., Gonçalves A. O., Morais M. L., Schulp A. S., da Tavares T. S., & Salminen J. (2015).  Geological Setting and Paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola. Netherlands Journal of Geosciences. 94(1), 121-136. Abstractstrganac_et_al_2014_geological_setting_bentiaba_angola.pdfWebsite

The Bench 19 Bonebed at Bentiaba, Angola, is a unique concentration of marine vertebrates preserving six species of mosasaurs in sediments best correlated by magnetostratigraphy to chron C32n.1n between 71.4 and 71.64 Ma. The bonebed formed at a paleolatitude near 24°S, with an Atlantic width at that latitude approximating 2700 km, roughly half that of the current width. The locality lies on an uncharacteristically narrow continental shelf near transform faults that controlled the coastal outline of Africa in the formation of the South Atlantic Ocean. Biostratigraphic change through the Bentiaba section indicates that the accumulation occurred in an ecological time dimension within the 240 ky bin delimited by chron 32n.1n. The fauna occurs in a 10 m sand unit in the Mocuio Formation with bones and partial skeletons concentrated in, but not limited to, the basal 1–2 m. The sediment entombing the fossils is an immature feldspathic sand shown by detrital zircon ages to be derived from nearby granitic shield rocks. Specimens do not appear to have a strong preferred orientation and they are not concentrated in a strand line. Stable oxygen isotope analysis of associated bivalve shells indicates a water temperature of 18.5°C. The bonebed is clearly mixed with scattered dinosaur and pterosaur elements in a marine assemblage. Gut contents, scavenging marks and associated shed shark teeth in the Bench 19 Fauna indicate biological association and attrition due to feeding activities. The ecological diversity of mosasaur species is shown by tooth and body-size disparity and by δ13C analysis of tooth enamel, which indicate a variety of foraging areas and dietary niches. The Bench 19 Fauna was formed in arid latitudes along a coastal desert similar to that of modern Namibia on a narrow, tectonically controlled continental shelf, in shallow waters below wave base. The area was used as a foraging ground for diverse species, including molluscivorus Globidens phosphaticus, small species expected near the coast, abundant Prognathodon kianda, which fed on other mosasaurs at Bench 19, and species that may have been transient and opportunistic feeders in the area.

Strganac, C., Jacobs L. L., Polcyn M. J., Mateus O., Myers T. S., Salminen J., May S. R., Araújo R., Ferguson K. M., Gon?alves A. O., Morais M. L., Schulp A. S., & da Silva Tavares T. (2014).  Geological setting and paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola. Geologie en Mijnbouw/Netherlands Journal of Geosciences. 94, 121-136., Number 1 Abstract
n/a
Polcyn, M., Jacobs L., Strganac C., Mateus O., Myers S., May S., Araujo R., Schulp A., & Morais M. (2014).  Geology and paleoecology of a marine vertebrate bonebed from the lower Maastrichtian of Angola. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 206.polcyn_et_al._2014_geology_and_paleoecology_of_a_marine_vertebrate_bonebed_from_the_lower_maastrichtian_of_angola.pdf
Polcyn, M., Jacobs L., Schulp A., & Mateus O. (2007).  Halisaurus (Squamata: Mosasauridae) from the Maastrichtian of Angola. Journal of Vertebrate Paleontology. 27(Suppl. to 3), 130A., Jan: Museu Lourinha, So Methodist Univ, Nat Hist Museum Maastricht Abstractpolcyn_et_al_mateus2007_halisaurus_angola_svpmeet.pdf

Recent fieldwork in the Namibe province in southern Angola yielded cranial and postcranial elements of at least two individuals of the rare and enigmatic mosasaur Halisaurus from a single small excavation. The genus Halisaurus is unique in retaining a primitive configuration of the temporal arcade, specifically a broad, vertically oriented contact between the parietal and the supratemporal. The supratemporal is broadly sutured to the opisthotic and prootic, unlike the condition in varanoids in which the simple lunate element lies between the parietal ramus and the squamosal and does not form a sutural contact with the opisthotic or prootic, but as in other halisaurines retains a plesiomorphic, vertically oriented contact with the parietal rami. The squamosal is lightly built and broadly arched as in Varanus. Comparison with known halisaurines indicates the new material is referable to the species Halisaurus arambourgi.
The locality that yielded the new specimens has also yielded a large number of isolated teeth, bones, articulated, and associated skeletons of Mosasaurus, Prognathodon, Globidens, and Plioplatecarpus, which with Halisaurus comprise a mosasaur assemblage most similar to that reported from the Maastrichtian of Morocco.

Polcyn, M., Jacobs L. L., Schulp A., & Mateus O. (2007).  Halisaurus (Squamata: Mosasauridae) from the Maastrichtian of Angola. Journal of Vertebrate Paleontology. 27(suppl. to 3), 130. Abstract
n/a
Pereira, B. C., Benton M. J., Ruta M., & Mateus O. (2015).  Mesozoic echinoid diversity in Portugal: Investigating fossil record quality and environmental constraints on a regional scale. Palaeogeography, Palaeoclimatology, Palaeoecology. 424, 132 - 146. Abstractpereira_e_al_2015_mesozoic_echinoids_portugal.pdfWebsite

Abstract Several analyses of diversity through geological time use global, synoptic databases, and this practice often makes it difficult to distinguish true signals in changing diversity from regional-scale sampling and/or geological artefacts. Here we investigate how echinoid diversity changed through the Mesozoic of the Lusitanian basin in Portugal based on a comprehensive, revised database, and seek to distinguish biological signal from geological or environmental constraints. The observed diversity pattern is far from having a defined trend, showing many fluctuations that appear to be linked with gaps in the geological record. This study revealed that, independently of the method used, whether correlation tests or model fitting, the diversity signal is not completely explained by the studied sampling proxies. Among the different proxies, marine facies variation in combination with outcrop area best explains the palaeodiversity curve.

Pereira, B. C., Benton M. J., Ruta M., & Mateus O. (2015).  Mesozoic echinoid diversity in Portugal: Investigating fossil record quality and environmental constraints on a regional scale. Palaeogeography, Palaeoclimatology, Palaeoecology. 424, 132-146. Abstract
n/a
Hendrickx, C., Bell P. R., Pittman M., Milner A. R. C., Cuesta E., O'Connor J., Loewen M., Currie P. J., Mateus O., Kaye T. G., & Delcourt R. (2022).  Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs. Biological Reviews. , Number n/a Abstracthendrickxetal.2021.morphologyanddistributionofscales.pdfWebsite

ABSTRACT Modern birds are typified by the presence of feathers, complex evolutionary innovations that were already widespread in the group of theropod dinosaurs (Maniraptoriformes) that include crown Aves. Squamous or scaly reptilian-like skin is, however, considered the plesiomorphic condition for theropods and dinosaurs more broadly. Here, we review the morphology and distribution of non-feathered integumentary structures in non-avialan theropods, covering squamous skin and naked skin as well as dermal ossifications. The integumentary record of non-averostran theropods is limited to tracks, which ubiquitously show a covering of tiny reticulate scales on the plantar surface of the pes. This is consistent also with younger averostran body fossils, which confirm an arthral arrangement of the digital pads. Among averostrans, squamous skin is confirmed in Ceratosauria (Carnotaurus), Allosauroidea (Allosaurus, Concavenator, Lourinhanosaurus), Compsognathidae (Juravenator), and Tyrannosauroidea (Santanaraptor, Albertosaurus, Daspletosaurus, Gorgosaurus, Tarbosaurus, Tyrannosaurus), whereas dermal ossifications consisting of sagittate and mosaic osteoderms are restricted to Ceratosaurus. Naked, non-scale bearing skin is found in the contentious tetanuran Sciurumimus, ornithomimosaurians (Ornithomimus) and possibly tyrannosauroids (Santanaraptor), and also on the patagia of scansoriopterygids (Ambopteryx, Yi). Scales are surprisingly conservative among non-avialan theropods compared to some dinosaurian groups (e.g. hadrosaurids); however, the limited preservation of tegument on most specimens hinders further interrogation. Scale patterns vary among and/or within body regions in Carnotaurus, Concavenator and Juravenator, and include polarised, snake-like ventral scales on the tail of the latter two genera. Unusual but more uniformly distributed patterning also occurs in Tyrannosaurus, whereas feature scales are present only in Albertosaurus and Carnotaurus. Few theropods currently show compelling evidence for the co-occurrence of scales and feathers (e.g. Juravenator, Sinornithosaurus), although reticulate scales were probably retained on the mani and pedes of many theropods with a heavy plumage. Feathers and filamentous structures appear to have replaced widespread scaly integuments in maniraptorans. Theropod skin, and that of dinosaurs more broadly, remains a virtually untapped area of study and the appropriation of commonly used techniques in other palaeontological fields to the study of skin holds great promise for future insights into the biology, taphonomy and relationships of these extinct animals.

Araújo, R., Polcyn M. J., Lindgren J., Jacobs L. L., Schulp A. S., Mateus O., Gonçalves O. A., & Morais M. - L. (2015).  New aristonectine elasmosaurid plesiosaur specimens from the Early Maastrichtian of Angola and comments on paedomorphism in plesiosaurs. Netherlands Journal of Geosciences. FirstView, 1–16., 2 Abstractaraujo_et_al_2015_paedomorphism-libre.pdfWebsite

ABSTRACT New elasmosaurid plesiosaur specimens are described from the Early Maastrichtian of Angola. Phylogenetic analyses reconstruct the Angolan taxon as an aristonectine elasmosaurid and the sister taxon of an unnamed form of similar age from New Zealand. Comparisons also indicate a close relationship with an unnamed form previously described from Patagonia. All of these specimens exhibit an ostensibly osteologically immature external morphology, but histological analysis of the Angolan material suggests an adult with paedomorphic traits. By extension, the similarity of the Angolan, New Zealand and Patagonian material indicates that these specimens represent a widespread paedomorphic yet unnamed taxon.

Araújo, R., Polcyn M. J., Lindgren J., Jacobs L. L., Schulp A. S., Mateus O., Gon?alves A. O., & Morais M. - L. (2014).  New aristonectine elasmosaurid plesiosaur specimens from the Early Maastrichtian of Angola and comments on paedomorphism in plesiosaurs. Geologie en Mijnbouw/Netherlands Journal of Geosciences. 94, 93-108., Number 1 Abstract
n/a
Myers, T. S., Polcyn M. J., Mateus O., Vineyard D. P., Gonçalves A. O., & Jacobs L. L. (2017).  A new durophagous stem cheloniid turtle from the lower Paleocene of Cabinda, Angola. Papers in Palaeontology. 2017, 1-16. Abstractnew_durophagous_stem_cheloniid_turtle_from_the_lower_paleocene_of_cabinda_angola.pdfWebsite

A new stem cheloniid turtle, Cabindachelys landanensis, gen. et sp. nov., is represented by a nearly complete skull and partial hyoid collected in lower Paleocene shallow marine deposits, equivalent to the offshore Landana Formation, near the town of Landana in Cabinda, Angola. A partial chelonioid carapace previously reported from this locality is referred here to C. landanensis. Cabindachelys landanensis possesses clear synapomorphies of Pan-Cheloniidae, including a rod-like rostrum basisphenoidale, V-shaped basisphenoid crest, and secondary palate, but also retains a reduced foramen palatinum posterius, unlike most other pan-cheloniids. Phylogenetic analysis suggests that C. landanensis forms a weakly-supported clade with Erquelinnesia gosseleti, Euclastes acutirostris, Euclastes wielandi and Terlinguachelys fischbecki, although a close relationship between the protostegid T. fischbecki and these durophagous pan-cheloniids is unlikely. The Paleocene–Eocene strata near Landana have produced a number of turtle fossils, including the holotype specimen of the pleurodire Taphrosphys congolensis. A turtle humerus collected c. 1 m above the holotype skull of C. landanensis differs from humeri of chelonioids and Taphrosphys, indicating that a third turtle taxon is present at Landana. Cheloniid fossil material is rare in the Landana assemblage, in comparison with the abundant remains of Taphrosphys congolensis found throughout the stratigraphic section. This disparity implies that C. landanensis preferred open marine habitats, whereas Taphrosphys congolensis spent more time in nearshore environments. The appearance of new durophagous species such as C. landanensis in the early Paleocene reflects the rapid radiation of pan-cheloniids as they diversified into open niches following the K–Pg extinction.

Myers, T. S., Polcyn M. J., Mateus O., Vineyard D. P., Gon?alves A. O., & Jacobs L. L. (2018).  A new durophagous stem cheloniid turtle from the lower Paleocene of Cabinda, Angola. Papers in Palaeontology. 4, 161-176., Number 2 Abstract
n/a
Araújo, R., Polcyn M. J., Schulp A. S., Mateus O., Jacobs L. L., Gonçalves O. A., & Morais M. - L. (2015).  A new elasmosaurid from the early Maastrichtian of Angola and the implications of girdle morphology on swimming style in plesiosaurs. Netherlands Journal of Geosciences. FirstView, 1–12., 1 Abstractaraujo_et_al_2015_a_new_elasmosaurid_from_the_early_maastrichtian_of_angola.pdfWebsite

ABSTRACT We report here a new elasmosaurid from the early Maastrichtian at Bentiaba, southern Angola. Phylogenetic analysis places the new taxon as the sister taxon to Styxosaurus snowii, and that clade as the sister of a clade composed of (Hydrotherosaurus alexandrae (Libonectes morgani + Elasmosaurus platyurus)). The new taxon has a reduced dorsal blade of the scapula, a feature unique amongst elasmosaurids, but convergent with cryptoclidid plesiosaurs, and indicates a longitudinal protraction-retraction limb cycle rowing style with simple pitch rotation at the glenohumeral articulation. Morphometric phylogenetic analysis of the coracoids of 40 eosauropterygian taxa suggests that there was a broad range of swimming styles within the clade.

Araújo, R., Polcyn M. J., Schulp A. S., Mateus O., Jacobs L. L., Gon?alves A. O., & Morais M. - L. (2014).  A new elasmosaurid from the early Maastrichtian of Angola and the implications of girdle morphology on swimming style in plesiosaurs. Geologie en Mijnbouw/Netherlands Journal of Geosciences. 94, 109-120., Number 1 Abstract
n/a
Mateus, O., Puértolas-Pascual E., & Callapez P. M. (2018).  A new eusuchian crocodylomorph from the Cenomanian (Late Cretaceous) of Portugal reveals novel implications on the origin of Crocodylia. Zoological Journal of the Linnean Society. , dec: Oxford University Press ({OUP}) AbstractWebsite
n/a
Foth, C., Evers S., Pabst B., Mateus O., Flisch A., Patthey M., & Rauhut O. W. M. (2015).  New insights into the lifestyle of Allosaurus (Dinosauria: Theropoda) based on another specimen with multiple pathologies. PeerJ PrePrints. 3, e824v1., 2015 Abstractfoth_et_al_2015_peerj-preprints-824.pdfWebsite

Adult large-bodied theropods are often found with numerous pathologies. A large, almost complete, probably adult Allosaurus specimen from the Howe Stephens Quarry, Morrison Formation (Late Kimmeridgian–Early Tithonian), Wyoming, shows multiple pathologies. Pathologic bones include the left dentary, two cervical vertebrae, one cervical and several dorsal ribs, the left scapula, the left humerus, right ischium, and two left pedal phalanges. These pathologies can be classified as follows: the fifth cervical vertebra, the scapula, several ribs and the ischium are traumatic, and a callus on the shaft of the left pedal phalanx II-2 is traumatic-infectious. Traumatically fractured elements exposed to frequent movement (e.g. the scapula and the ribs) show a tendency to develop pseudarthroses instead of callus healing. The pathologies in the lower jaw and a reduced flexor tubercle of the left pedal phalanx II-2 are most likely traumatic or developmental in origin. The pathologies on the fourth cervical are most likely developmental in origin or idiopathic, that on the left humerus is infectious or idiopathic, whereas left pedal phalanx IV-1 is classified as idiopathic. With exception of the ischium, all traumatic / traumatic-infectious pathologic elements show unambiguous evidences of healing, indicating that the respective pathologies did not cause the death of this individual. Alignment of the scapula and rib pathologies from the left side suggests that all may have been caused by a single traumatic event. The ischial fracture may have been fatal. The occurrence of multiple traumatic pathologies again underlines that large-bodied theropods experienced frequent injuries during life, indicating an active predatory lifestyle, and their survival perhaps supports a gregarious behavior for Allosaurus. Signs of infections are scarce and locally restricted, indicating a successful prevention of the spread of pathogens, as it is the case in extant reptiles (including birds).

Foth, C., Evers S. W., Pabst B., Mateus O., Flisch A., Patthey M., & Rauhut O. W. M. (2015).  New insights into the lifestyle of \\textitAllosaurus (Dinosauria: Theropoda) based on another specimen with multiple pathologies. PeerJ. 3, e940., 5 AbstractWebsite

Adult large-bodied theropods are often found with numerous pathologies. A large, almost complete, probably adult \\textitAllosaurus specimen from the Howe Stephens Quarry, Morrison Formation (Late Kimmeridgian–Early Tithonian), Wyoming, exhibits multiple pathologies. Pathologic bones include the left dentary, two cervical vertebrae, one cervical and several dorsal ribs, the left scapula, the left humerus, the right ischium, and two left pedal phalanges. These pathologies can be classified as follows: the fifth cervical vertebra, the scapula, several ribs and the ischium are probably traumatic, and a callus on the shaft of the left pedal phalanx II-2 is probably traumatic-infectious. Traumatically fractured elements exposed to frequent movement (e.g., the scapula and the ribs) show a tendency to develop pseudarthroses instead of a callus. The pathologies in the lower jaw and a reduced extensor tubercle of the left pedal phalanx II-2 are most likely traumatic or developmental in origin. The pathologies on the fourth cervical are most likely developmental in origin or idiopathic, that on the left humerus could be traumatic, developmental, infectious or idiopathic, whereas the left pedal phalanx IV-1 is classified as idiopathic. With exception of the ischium, all as traumatic/traumatic-infectious classified pathologic elements show unambiguous evidences of healing, indicating that the respective pathologies did not cause the death of this individual. Alignment of the scapula and rib pathologies from the left side suggests that all may have been caused by a single traumatic event. The ischial fracture may have been fatal. The occurrence of multiple lesions interpreted as traumatic pathologies again underlines that large-bodied theropods experienced frequent injuries during life, indicating an active predatory lifestyle, and their survival perhaps supports a gregarious behavior for \\textitAllosaurus. Alternatively, the frequent survival of traumatic events could be also related to the presence of non-endothermic metabolic rates that allow survival based on sporadic food consumption or scavenging behavior. Signs of pathologies consistent with infections are scarce and locally restricted, indicating a successful prevention of the spread of pathogens, as it is the case in extant reptiles (including birds).

Vineyard, D., Mateus O., Jacobs L. L., Polcyn M. J., & Schulp A. (2012).  A new marine turtle from the Maastrichtian of Angola. Journal of Vertebrate Paleontology, Program and Abstracts, 2012, 189. ISSN 1937-2809 . 189.vineyard_mateus_et_al_2012_euclastes_chelonia_turtle_angola_svp_2012_abstract.pdf
Schulp, A. S., Polcyn M. J., Mateus O., Jacobs L. L., Morais L. M., & Tavares T. S. (2006).  New mosasaur material from the Maastrichtian of Angola, with notes on the phylogeny, distribution and palaeoecology of the genus Prognathodon. Publicaties van het Natuurhistorisch Genootschap in Limburg Reeks XLV aflevering 1. Stichting Natuurpublicaties Limburg, Maastricht . 57-67 .schulp_polcyn_mateus_jacobs_et_al_2006_new_mosasaur_material_from_the_maastrichtian_of_angola_with_notes_on_the_phylogeny_distribution_and_palaeoecology_of_the_genus_prognathodon.pdf
Schulp, A. S., Polcyn M. J., Mateus O., Jacobs L. L., Morais M. L., & Tavares T. S. (2006).  New mosasaur material from the Maastrichtian of Angola, with notes on the phylogeny, distribution and palaeoecology of the genus Prognathodon. Publicaties van het Natuurhistorisch Genootschap in Limburg Reeks XLV aflevering 1. Stichting Natuurpublicaties Limburg, Maastricht. 57-67. Abstract
n/a
Puértolas-Pascual, E., Marx M., Mateus O., Saleiro A., Fernandes A. E., Marinheiro J., Tomás C., & Mateus S. (2021).  A new plesiosaur from the Lower Jurassic of Portugal and the early radiation of Plesiosauroidea. Acta Palaeontologica Polonica. 66(2), 369-388. Abstracta_new_plesiosaur_from_the_lower_jurassic_of_portugal_and_the_early_radiation_of_plesiosauroidea.pdfWebsite

A new plesiosaur partial skeleton, comprising most of the trunk and including axial, limb, and girdle bones, was collected in the lower Sinemurian (Coimbra Formation) of Praia da Concha, near São Pedro de Moel in central west Portugal. The specimen represents a new genus and species, Plesiopharos moelensis gen. et sp. nov. Phylogenetic analysis places this taxon at the base of Plesiosauroidea. Its position is based on this exclusive combination of characters: presence of a straight preaxial margin of the radius; transverse processes of mid-dorsal vertebrae horizontally oriented; ilium with sub-circular cross section of the shaft and subequal anteroposterior expansion of the dorsal blade; straight proximal end of the humerus; and ventral surface of the humerus with an anteroposteriorly long shallow groove between the epipodial facets. In addition, the new taxon has the following autapomorphies: iliac blade with less expanded, rounded and convex anterior flank; highly developed ischial facet of the ilium; apex of the neural spine of the first pectoral vertebra inclined posterodorsally with a small rounded tip. This taxon represents the most complete and the oldest plesiosaur species in the Iberian Peninsula. It is also the most complete, best preserved, and oldest marine vertebrate in the region and testifies to the incursion of marine reptiles in the newly formed proto-Atlantic sea, prior to the Atlantic Ocean floor spreading in the Early Cretaceous.

Polcyn, M., Jacobs L., Mateus O., & Schulp A. (2009).  New specimens of Angolasaurus bocagei and comments on the early radiations of plioplatecarpine mosasaurs. Journal of Vertebrate Paleontology. Journal of Vertebrate Paleontology. 29, 165., Number 3 Abstract
n/a
Polcyn, M. J., Jacobs L. L., Mateus O., & Schulp A. S. (2009).  New specimens of Angolasaurus bocagei and comments on the early radiations of plioplatecarpine mosasaurs. Journal of Vertebrate Paleontology. Journal of Vertebrate Paleontology. 29, 165–165., Number 3 Abstract
n/a
Polcyn, M. J., Jacobs L. L., Schulp A. S., & Mateus O. (2010).  The North African Mosasaur Globidens phosphaticus from the Maastrichtian of Angola. Historical Biology. 22, 175-185., Number 1 Abstract
n/a
Jacobs, L. L., Mateus O., Polcyn M. J., Schulp A. S., Antunes M. T., Morais M. L., & da Silva Tavares T. (2006).  The occurrence and geological setting of Cretaceous dinosaurs, mosasaurs, plesiosaurs, and turtles from Angola. Paleont. Soc. Korea. 22(1), 91-110. Abstractjacobs_mateus-et_al_2006_angola.pdf

Vertebrate-bearing fossiliferous outcrops of Cretaceous age in sub-Saharan Africa are rare because of younger superficial deposits, vegetation cover, and the widespread occurrence of Precambrian metamorphic plateau basement comprising much of the continent. However, one area of extensive marine and nonmarine
Cretaceous exposures is found between the plateau and the coast in Angola. The Angolan margin was formed in conjunction with the breakup of Gondwana and subsequent growth of the South Atlantic. Cretaceous deposits are constrained in age by the emplacement of oceanic crust, which began no later than magnetozone M3
(approximately 128 Ma, Barremian). Shallow marine facies are exposed in sea cliffs but equivalent facies become increasingly terrestrial inland. Few vertebrate fossils have been described from Angola aside from sharks.
Notable exceptions are the late Turonian mosasaurs Angolasaurus bocagei and Tylosaurus iembeensis from northern Angola. Those taxa are significant because they are among the earliest derived mosasaurs. Recent field work led to the discovery of a new skull of Angolasaursus as well as sharks, fish, plesiosaurs, the skull of a new taxon of turtle, additional mosasaurs, and the articulated forelimb of a sauropod dinosaur, the first reported dinosaur from Angola. In southern Angola, marine sediments spanning the Cretaceous-Paleogene boundary are found.

Jacobs, L. L., Mateus O., Polcyn M. J., Schulp A. S., Antunes M. T., Morais M. L., & Tavares T. S. (2006).  The occurrence and geological setting of Cretaceous dinosaurs, mosasaurs, plesiosaurs, and turtles from Angola. Journal of the Paleontological Society of Korea. 22, , Number 1 Abstract
n/a
Jacobs, L. L., Mateus O., Polcyn M. J., Schulp A. S., Antunes M. T., Morais M. L., & da Silva Tavares T. (2006).  The occurrence and geological setting of Cretaceous dinosaurs, mosasaurs, plesiosaurs, and turtles from Angola. JOURNAL-PALEONTOLOGICAL SOCIETY OF KOREA. 22, 91–91., Number 1 Abstract
n/a
Mateus, O., Jacobs L., Polcyn M., Schulp A. S., Vineyard D., Neto A. B., & Antunes M. T. (2009).  The oldest African eucryptodiran turtle from the Cretaceous of Angola. Acta Palaeontologica Polonica. 54, 581-588., Jan: Univ Agostinho Neto, Univ Nova Lisboa, Museu Lourinha, Acad Ciencias Lisboa, Nat Hist Museum Maastricht, So Methodist Univ Abstractmateus_et_al_2009_the_oldest_african_angolachelys_angola_turtle.pdfWebsite

A new Late Cretaceous turtle, Angolachelys mbaxi gen. et sp. nov., from the Turonian (90 Mya) of Angola, represents the oldest eucryptodire from Africa. Phylogenetic analysis recovers Angolachelys mbaxi as the sister taxon of Sandownia harrisi from the Aptian of Isle of Wight, England. An unnamed turtle from the Albian Glen Rose Formation of Texas (USA) and the Kimmeridgian turtle Solnhofia parsonsi (Germany), are successively more distant sister taxa. Bootstrap analysis suggests those four taxa together form a previously unrecognized monophyletic clade of marine turtles, herein named Angolachelonia clade nov., supported by the following synapomorphies: mandibular articulation of quadrate aligned with or posterior to the occiput, and basisphenoid not visible or visibility greatly reduced in ventral view. Basal eucryptodires and angolachelonians originated in the northern hemisphere, thus Angolachelys represents one of the first marine amniote lineages to have invaded the South Atlantic after separation of Africa and South America.

Mateus, O., Jacobs L., Polcyn M., Schulp A. S., Vineyard D., Buta Neto A., & Telles Antunes M. (2009).  The oldest African eucryptodiran turtle from the Cretaceous of Angola. Acta Palaeontologica Polonica. 54, 581-588., Number 4 Abstract
n/a
Xing, L., Lockley M. G., Marty D., Zhang J., Wang Y., Klein H., McCrea R. T., Buckley L. G., Belvedere M., Mateus O., Gierli?ski G. D., Piñuela L., Persons W. S., Wang F., Ran H., Dai H., & Xie X. (2015).  An ornithopod-dominated tracksite from the lower Cretaceous Jiaguan Formation (Barremian-Albian) of Qijiang, South-Central China: New discoveries, ichnotaxonomy, preservation and palaeoecology. PLoS ONE. 10, , Number 10 Abstract
n/a
Xing, L., Lockley M. G., Marty D., Zhang J., Wang Y., Klein H., McCrea R. T., Buckley L. G., Belvedere M., Mateus O., Gierliński G. D., Piñuela L., Persons, IV S. W., Wang F., Ran H., Dai H., & Xie X. (2015).  An Ornithopod-Dominated Tracksite from the Lower Cretaceous Jiaguan Formation (Barremian–Albian) of Qijiang, South-Central China: New Discoveries, Ichnotaxonomy, Preservation and Palaeoecology. PLoS ONE. 10, e0141059., 10, Number 10: Public Library of Science Abstractlida_et_al_2015_an_ornithopod-dominated_tracksite_from_the.pdfWebsite

The historically-famous Lotus Fortress site, a deep 1.5–3.0-meter-high, 200-meter-long horizonal notch high up in near-vertical sandstone cliffs comprising the Cretaceous Jiaguan Formation, has been known since the 13th Century as an impregnable defensive position. The site is also extraordinary for having multiple tetrapod track-bearing levels, of which the lower two form the floor of part of the notch, and yield very well preserved asseamblages of ornithopod, bird (avian theropod) and pterosaur tracks. Trackway counts indicate that ornithopods dominate (69%) accounting for at least 165 trackmakers, followed by bird (18%), sauropod (10%), and pterosaur (3%). Previous studies designated Lotus Fortress as the type locality of Caririchnium lotus and Wupus agilis both of which are recognized here as valid ichnotaxa. On the basis of multiple parallel trackways both are interpreted as representing the trackways of gregarious species. C. lotus is redescribed here in detail and interpreted to indicate two age cohorts representing subadults that were sometimes bipedal and larger quadrupedal adults. Two other previously described dinosaurian ichnospecies, are here reinterpreted as underprints and considered nomina dubia. Like a growing number of significant tetrapod tracksites in China the Lotus Fortress site reveals new information about the composition of tetrapod faunas from formations in which the skeletal record is sparse. In particular, the site shows the relatively high abundance of Caririchium in a region where saurischian ichnofaunas are often dominant. It is also the only site known to have yielded Wupus agilis. In combination with information from other tracksites from the Jiaguan formation and other Cretaceous formations in the region, the track record is proving increasingly impotant as a major source of information on the vertebrate faunas of the region. The Lotus Fortress site has been developed as a spectacular, geologically-, paleontologically- and a culturally-significant destination within Qijiang National Geological Park.

Beccari, V., Pinheiro F. L., Nunes I., Anelli L. E., Mateus O., & Costa F. R. (2021).  Osteology of an exceptionally well-preserved tapejarid skeleton from Brazil: Revealing the anatomy of a curious pterodactyloid clade. PLOS ONE. 16(8), e0254789 - ., 2021/08/25: Public Library of Science Abstractbeccari_et_al_2021.pdfWebsite

A remarkably well-preserved, almost complete and articulated new specimen (GP/2E 9266) of Tupandactylus navigans is here described for the Early Cretaceous Crato Formation of Brazil. The new specimen comprises an almost complete skeleton, preserving both the skull and post-cranium, associated with remarkable preservation of soft tissues, which makes it the most complete tapejarid known thus far. CT-Scanning was performed to allow the assessment of bones still covered by sediment. The specimen can be assigned to Tupa. navigans due to its vertical supra-premaxillary bony process and short and rounded parietal crest. It also bears the largest dentary crest among tapejarine pterosaurs and a notarium, which is absent in other representatives of the clade. The new specimen is here regarded as an adult individual. This is the first time that postcranial remains of Tupa. navigans are described, being also an unprecedented record of an articulated tapejarid skeleton from the Araripe Basin.

Guillaume, A. R. D., Moreno-Azanza M., Puértolas-Pascual E., & Mateus O. (2020).  Palaeobiodiversity of crocodylomorphs from the Lourinhã Formation based on the tooth record: insights into the palaeoecology of the Late Jurassic of Portugal. Zoological Journal of the Linnean Society. 189(2), 549–583., 11 Abstractguillaume_et_al_palaeobiodiversity_of_crocodylomorphs_from_the.pdfWebsite

{Crocodylomorphs were a diverse clade in the Late Jurassic of Portugal, with six taxa reported to date. Here we describe 126 isolated teeth recovered by screen-washing of sediments from Valmitão (Lourinhã, Portugal, late Kimmeridgian–Tithonian), a vertebrate microfossil assemblage in which at least five distinct crocodylomorph taxa are represented. Ten morphotypes are described and attributed to five clades (Lusitanisuchus, Atoposauridae, Goniopholididae, Bernissartiidae and an undetermined mesoeucrocodylian). Four different ecomorphotypes are here proposed according to ecological niches and feeding behaviours: these correspond to a diet based on arthropods and small vertebrates (Lusitanisuchus and Atoposauridae), a generalist diet (Goniopholididae), a durophagous diet (Bernissartiidae) and a carnivorous diet. Lusitanisuchus mitracostatus material from Guimarota is here redescribed to achieve a better illustration and comparison with the new material.This assemblage shares similar ecomorphotypes with other Mesozoic west-central European localities, where a diversity of crocodylomorphs lived together, avoiding direct ecological competition through niche partitioning. The absence of large marine crocodylomorphs, present in other contemporaneous assemblages, is here interpreted as evidence that the Valmitão assemblage was deposited in a freshwater environment, although sample bias cannot be completely ruled out. These affinities are further supported by the presence of lanceolate and leaf-shaped teeth associated with continental clades.}

Ceríaco, L. M. P., Gutiérrez E. E., Dubois A., Abdala C. S., Alqarni A. S., Adler K., et al. (2016).  Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences. Zootaxa. 4196(3), 435 - 445., 2016 AbstractWebsite
n/a
Ceríaco, L. M. P., Gutiérrez E. E., Dubois A., Abdala C. S., Alqarni A. S., Adler K., et al. (2016).  Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences. Zootaxa. 4196, 435-445., Number 3 Abstract
n/a
Polcyn, M. J., Jacobs L. L., Ara´ujo R., Schulp A. S., & Mateus O. (2014).  Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology. 400, 17-27. Abstractpolcyn_et_al_2014_physical_drivers_mosasaurs.pdf

Mosasaurs are marine squamates with a 32.5 million-year history from their appearance at 98 Ma to their extinction at the K-Pg boundary (65.5 Ma). Using a database of 43 generic and 94 species-level taxa, we compare the taxonomic diversity and patterns of morphological disparity in mosasaurs with sea level, sea surface temperature, and stable carbon isotope curves for the Upper Cretaceous to explore factors that may have influenced their evolution. No single factor unambiguously accounts for all radiations, diversification, and extinctions; however, the broader patterns of taxonomic diversification and
morphological disparity point to niche differentiation in a “fishing up” scenario under the influence of “bottom-up” selective pressures. The most likely driving force in mosasaur evolution was high productivity in the Late Cretaceous, driven by tectonically controlled sea levels and climatically controlled ocean stratification and nutrient delivery. When productivity collapsed at the end of the Cretaceous, coincident with bolide impact, mosasaurs became extinct.

Polcyn, M. J., Jacobs L. L., Araújo R., Schulp A. S., & Mateus O. (2014).  Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology. 400, 17-27. Abstract
n/a
Jacobs, L. L., Polcyn M. J., Mateus O., Schulp A. S., Gonçalves A. O., & Morais M. L. (2016).  Post-Gondwana Africa and the vertebrate history of the Angolan Atlantic Coast. Memoirs of Museum Victoria. 74, 343–362. Abstractjacobs_et_al_2016_post-gondwana_africa_and_the_vertebrate_history_of_the_angolan_atlantic_coast_343-362_mmv74_jacobs_4_web.pdf

n/a

Jacobs, L. L., Polcyn M. J., Mateus O., Schulp A. S., Gon?alves A. O., & Morais M. L. (2016).  Post-Gondwana Africa and the vertebrate history of the Angolan Atlantic Coast. Memoirs of Museum Victoria. 74, 343-362. Abstract
n/a
Jacobs, L. L., Polcyn M. J., Mateus O. \á\}vio, Schulp A. S., Gon\{\c c\}alves A. \ó\}nio O., & Morais M. L. (2016).  Post-Gondwana Africa and the vertebrate history of the Angolan Atlantic Coast. Memoirs of Museum Victoria. 74, 343\–\}362. Abstract
n/a
Strganac, C., Jacobs L. L., Polcyn M. J., Ferguson K. M., Mateus O., Gonçalves O. A., Morais M. - L., & da Silva Tavares T. (2015).  Stable oxygen isotope chemostratigraphy and paleotemperature regime of mosasaurs at Bentiaba, Angola. Netherlands Journal of Geosciences. FirstView, 1–7., 2 Abstractstrganac_etal2015_stable_oxigen_isotopes.pdfWebsite

ABSTRACT Stable oxygen isotope values of inoceramid marine bivalve shells recovered from Bentiaba, Angola, are utilised as a proxy for paleotemperatures during the Late Cretaceous development of the African margin of the South Atlantic Ocean. The δ18O values derived from inoceramids show a long-term increase from –3.2‰ in the Late Turonian to values between –0.8 and –1.8‰ in the Late Campanian. Assuming a constant oceanic δ18O value, an ∼2‰ increase may reflect cooling of the shallow marine environment at Bentiaba by approximately 10°. Bentiaba values are offset by about +1‰ from published records for bathyal Inoceramus at Walvis Ridge. This offset in δ18O values suggests a temperature difference of ∼5° between coastal and deeper water offshore Angola. Cooler temperatures implied by the δ18O curve at Bentiaba coincide with the stratigraphic distribution of diverse marine amniotes, including mosasaurs, at Bentiaba.