Publications

Export 575 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
N
b Neves, N.a b, Barros Antunes Calado Fortunato Martins Ferreira R. a E. a. "Aluminum doped zinc oxide sputtering targets obtained from nanostructured powders: Processing and application." Journal of the European Ceramic Society. 32 (2012): 4381-4391. AbstractWebsite

This work reports the production of ceramic targets based on nanostructured Al-doped ZnO (AZO) powders for sputtering applications. The nanostructured powder is obtained by a new patented process based on the detonation of an emulsion containing both Zn and Al metal precursors in the final proportion of 98:2wt% (ZnO:Al 2O 3), through which the Al contains is highly uniform distributed over ZnO. Due to the nanostructured powder characteristics, the targets can be sintered at substantially lower temperatures (1150-1250°C) by conventional sintering, contributing to production costs reduction of ceramic targets and consequently the costs of photovoltaic and displays industries. Electrical resistivity values around 3.0-7.0×10 -3Ωcm have been obtained depending on final microstructure of the targets. The electro-optical properties of the films produced at room temperature with thicknesses around 360nm, besides being highly uniform exhibit a resistivity of about 1×10 -3Ωcm and a transmittance in the visible range above 90%. © 2012 Elsevier Ltd.

b c Nedev, N.a b, Beshkov Fortunato Georgiev Ivanov Raniero Zhang Martins G. a E. b. "Influence of the rapid thermal annealing on the properties of thin a-Si films." Materials Science Forum. 455-456 (2004): 108-111. AbstractWebsite

The variation of the structure, morphology and the electrical properties of thin amorphous silicon films caused by Rapid Thermal Annealing is studied. The films annealed at 1200°C for 2 minutes change their structure to polycrystalline and as a result their resistivity decreases by 4 orders of magnitude. Due to the small thickness of the as deposited amorphous silicon the obtained poly-Si is strongly irregular and has many discontinuities in its texture.

Nayak, P.K.a, Busani Elamurugu Barquinha Martins Hong Fortunato T. a E. a. "Zinc concentration dependence study of solution processed amorphous indium gallium zinc oxide thin film transistors using high-k dielectric." Applied Physics Letters. 97 (2010). AbstractWebsite

The effects of zinc concentration on the performance of solution processed amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) have been investigated using high-k aluminum titanium oxide as gate dielectric. The x-ray diffraction results confirmed that all the IGZO channel layers are amorphous. The performance of a-IGZO TFTs were investigated in the linear regime operation. Highest linear field-effect mobility of 5.8 cm2 /V s with an Ion / Ioff ratio of 6× 107 and subthreshold swing of 0.28 V/dec were obtained for the a-IGZO (311) TFTs. The obtained performance of the a-IGZO TFTs is very promising for low-voltage display applications. © 2010 American Institute of Physics.

Nayak, P.K., Pinto Gonçalves Martins Fortunato J. V. G. "Environmental, optical, and electrical stability study of solution-processed zinc-tin-oxide thin-film transistors." IEEE/OSA Journal of Display Technology. 7 (2011): 640-643. AbstractWebsite

In this paper, we report the environmental, optical, and gate bias stress stability of amorphous zinc-tin-oxide (ZTO) thin-film transistors (TFTs) fabricated by sol-gel spin-coating method. The ZTO TFTs showed excellent environmental and optical stability. The threshold voltage stability of ZTO TFTs was sensitive to both positive and negative gate bias stress. Maximum threshold voltage shifting of +1.9 and -3.2 V was observed under a gate bias stress of +10 and -10 V, respectively, with no significant change to subthreshold swing value. © 2006 IEEE.

Nandy, S., Gonçalves Pinto Busani Figueiredo Pereira Paiva Martins Fortunato G. J. V. "Current transport mechanism at metal-semiconductor nanoscale interfaces based on ultrahigh density arrays of p-type NiO nano-pillars." Nanoscale. 5 (2013): 11699-11709. AbstractWebsite

The present work focuses on a qualitative analysis of localised I-V characteristics based on the nanostructure morphology of highly dense arrays of p-type NiO nano-pillars (NiO-NPs). Vertically aligned NiO-NPs have been grown on different substrates by using a glancing angle deposition (GLAD) technique. The preferred orientation of as grown NiO-NPs was controlled by the deposition pressure. The NiO-NPs displayed a polar surface with a microscopic dipole moment along the (111) plane (Tasker's type III). Consequently, the crystal plane dependent surface electron accumulation layer and the lattice disorder at the grain boundary interface showed a non-uniform current distribution throughout the sample surface, demonstrated by a conducting AFM technique (c-AFM). The variation in I-V for different points in a single current distribution grain (CD-grain) has been attributed to the variation of Schottky barrier height (SBH) at the metal-semiconductor (M-S) interface. Furthermore, we observed that the strain produced during the NiO-NPs growth can modulate the SBH. Inbound strain acts as an external field to influence the local electric field at the M-S interface causing a variation in SBH with the NPs orientation. This paper shows that vertical arrays of NiO-NPs are potential candidates for nanoscale devices because they have a great impact on the local current transport mechanism due to its nanostructure morphology. © 2013 The Royal Society of Chemistry.

M
b d Morawiec, S.a b, Mendes Filonovich Mateus Mirabella Aguas Ferreira Simone Fortunato Martins Priolo Crupi M. J. a S. "Photocurrent enhancement in thin a-Si:H solar cells via plasmonic light trapping." Conference on Lasers and Electro-Optics Europe - Technical Digest. Vol. 2014-January. 2014. Abstract

Photocurrent enhancement in thin a-Si:H solar cells due to the plasmonic light trapping is investigated, and correlated with the morphology and the optical properties of the selfassembled silver nanoparticles incorporated in the cells' back reflector. © 2014 Optical Society of America.

Moldovan, O.a, Castro-Carranza Cerdeira Estrada Barquinha Martins Fortunato Miljakovic Iñiguez A. b A. c. "A compact model and direct parameters extraction techniques For amorphous gallium-indium-zinc-oxide thin film transistors." Solid-State Electronics. 126 (2016): 81-86. AbstractWebsite

An advanced compact and analytical drain current model for the amorphous gallium indium zinc oxide (GIZO) thin film transistors (TFTs) is proposed. Its output saturation behavior is improved by introducing a new asymptotic function. All model parameters were extracted using an adapted version of the Universal Method and Extraction Procedure (UMEM) applied for the first time for GIZO devices in a simple and direct form. We demonstrate the correct behavior of the model for negative VDS, a necessity for a complete compact model. In this way we prove the symmetry of source and drain electrodes and extend the range of applications to both signs of VDS. The model, in Verilog-A code, is implemented in Electronic Design Automation (EDA) tools, such as Smart Spice, and compared with measurements of TFTs. It describes accurately the experimental characteristics in the whole range of GIZO TFTs operation, making the model suitable for the design of circuits using these types of devices. © 2016 Elsevier Ltd

Meng, L.-j., Maçarico Martins A. R. "Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering." Vacuum. 46 (1995): 673-680. AbstractWebsite

Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as deposited film is about 1.3 × 10-1 gW*cm and decreases down to 6.9 × 10-3 Ω*cm as the annealing temperature is increased up to 500 °C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping. © 1995.

Meng, L., Macarico Martins A. R. "Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering." Materials Research Society Symposium - Proceedings. Vol. 388. 1995. 379-384. Abstract

Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as-deposited film is about 1.3×10-1 Ω* cm and decreases down to 6.9×10-3 Ω* cm as the annealing temperature is increased up to 500°C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping.

Mendes, M.J., Araújo Vicente Águas Ferreira Fortunato Martins A. A. H. "Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells." Nano Energy. 26 (2016): 286-296. AbstractWebsite

The interaction of light with wavelength-sized photonic nanostructures is highly promising for light management applied to thin-film photovoltaics. Several light trapping effects come into play in the wave optics regime of such structures that crucially depend on the parameters of the photonic and absorbing elements. Thus, multi-parameter optimizations employing exact numerical models, as performed in this work, are essential to determine the maximum photocurrent enhancement that can be produced in solar cells.Generalized spheroidal geometries and high-index dielectric materials are considered here to model the design of the optical elements providing broadband absorption enhancement in planar silicon solar cells. The physical mechanisms responsible for such enhancement are schematized in a spectral diagram, providing a deeper understanding of the advantageous characteristics of the optimized geometries. The best structures, composed of TiO2 half-spheroids patterned on the cells' top surface, yield two times higher photocurrent (up to 32.5 mA/cm2 in 1.5 μm thick silicon layer) than the same devices without photonic schemes.These results set the state-of-the-art closer to the theoretical Lambertian limit. In addition, the considered light trapping designs are not affected by the traditional compromise between absorption enhancement versus current degradation by recombination, which is a key technological advantage. © 2016 Elsevier Ltd.

c c d Mendes, M.J.a b, Morawiec Mateus Lyubchyk Águas Ferreira Fortunato Martins Priolo Crupi S. b T. a. "Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids." Nanotechnology. 26 (2015). AbstractWebsite

The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells' front surface formed from the deposition of material over the spherically shaped colloids. © 2015 IOP Publishing Ltd.

Mei, S.a, Yang Ferreira Martins J. a J. M. "Optimisation of parameters for aqueous tape-casting of cordierite-based glass ceramics by Taguchi method." Materials Science and Engineering A. 334 (2002): 11-18. AbstractWebsite

Aqueous suspensions of cordierite-based glass ceramics were prepared by using four types of dispersants and binders and different solids loading. The experiments were designed according to the Taguchi method, which shows great advantages in optimising more than two factors that need to be considered in an experimental design. Different parameters such as the type and concentration of the dispersants and the binders, and the solids loading were optimised to obtain homogeneous and crack-free green tapes. Dolapix CE 64 (1.0 wt.%) and Duramax B-1080 or Duramax B-1070 (10 wt.%) with 65 wt.% solids loading represent an optimal selection of the parameters to obtain low viscosity suspension, and crack-free green tapes with the highest green and sintered density. Microstructural differences between crack-free and cracked samples were observed by scanning electron microscopy (SEM). The crack-free green tapes show homogenous microstructures from top to bottom with organic additives uniformly surrounding the powders, whereas cracked samples exhibit heterogeneous microstructures and non-uniform distribution of the organics. © 2002 Elsevier Science B.V. All rights reserved.

Mei, S.a, Yang Ferreira Martins J. a J. M. "Aqueous tape casting of low-k cordierite substrate: The influence of glass content." Materials Science Forum. 455-456 (2004): 168-171. AbstractWebsite

Thick films of cordierite-based glass ceramics were prepared by aqueous tape casting from suspensions containing 80-wt% solids. The weight proportions of cordierite/glass ranged from 70/30 to 30/70 in order to investigate the effect of glass content on the rheological behaviour and on the microstructures and properties of the green tapes. Suspensions with 50 to 60-wt% glass content exhibited the lowest viscosity values among all the slurries investigated, while the green tape containing 30-wt% glass presented homogenous microstructures at both top and bottom surfaces, contrarily to the observations for the other compositions. The green densities increased with glass content. The sintered tapes (1150°C, 2h) containing 50 to 60-wt% glass exhibited the lowest values for the dielectric constant (∼5.2) and dielectric loss (∼0.002) at 1MHz.

Mei, S., Yang Monteiro Martins Ferreira J. R. R. "Synthesis, characterization, and processing of cordierite-glass particles modified by coating with an alumina precursor." Journal of the American Ceramic Society. 85 (2002): 155-160. AbstractWebsite

The surfaces of cordierite and glass particles were modified by coating them with an alumina precursor using a precipitation process in the presence of urea. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy, X-ray diffraction, electrophoresis, and rheological measurements were used to characterize the coated powders. SEM and transmission electron microscopy morphologies of the coated powders revealed that amorphous and homogeneous coatings have been formed around the particles. The morphology of the coated powders showed a coiled wormlike surface. The coating Al2O3 layer dominated the surface properties of the coated glass and cordierite powders. The influence of the coating layer on the processing ability of cordierite-based glass-ceramics substrates by tape casting was studied in aqueous media. It could be concluded that the coating of the powders facilitates the processing and yields green and sintered tapes with denser, more homogeneous microstructures compared with the uncoated powders.

Martins, R.a, Ferreira Gonçalves Nunes Fortunato Marvão Martins J. a C. a. "Role of soldering parameters on the electrical performances presented by Cu-Sn-Cu joints used in power diodes." Materials Science and Engineering A. 288 (2000): 275-279. AbstractWebsite

The effects of Sn thickness electrodeposited over Cu on the structural and morphological performance of the joints formed were investigated. The electrical stability of the joints formed was analyzed under extreme aggressive conditions. Results indicated that the proposed soldering technology greatly satisfied the demands concerning soldering specifications.

Martins, R., Guimaraes Carvalho Andrade Corgnier Sanematsu L. N. A. "ANALYSIS OF A NEW PRODUCTION TECHNIQUE FOR AMORPHOUS SILICON SOLAR CELLS." Commission of the European Communities, (Report) EUR. 1984. 778-782. Abstract

This new production technique is based on the growth of a-Si films on a reactor where gas decomposition promoted by a capacitively coupled r. f. power system takes place in a chamber separated from that where amorphous films are deposited under the action of an electromagnetic static field. Using this method, we shall reduce films contamination caused by the residual gas desorbed from reactor walls. At the same time, there is a reduction plasma ion and electron damages on the deposited films. The main species impinging upon our substrates will be mainly composed of long life radicals with high mobilities and high diffusion rates, which will give origin to a random silicon network free of long poly-silane chains.

i Martins, R.a, Águas Ferreira Fortunato Raniero Roca Cabarrocas H. a I. a. "Composition, structure and optical characteristics of polymorphous silicon films deposited by PECVD at 27.12 MHz." Materials Science Forum. 455-456 (2004): 100-103. AbstractWebsite

This paper presents data concerning the composition structure and optical characteristics of polymorphous silicon films produced by plasma enhanced chemical vapour deposition at 27.12 MHz and determined respectively by infrared spectrometry, micro Raman, exodiffusion and spectroscopic ellipsometry measurements. When compared to the pm-Si:H films produced at 13.56 MHz, the films produced at 27.12 MHz present hydrogen contents in the range of 21 at%, the sharp peak ascribed to the exodifusion measurements is shifted towards high temperatures and the imaginary part of the dielectric function 〈ε2〉 is larger and shifted to high energies. Apart from that the peaks of the infrared spectra ascribed to the stretching modes shift towards high wave numbers and the half width of the micro Raman peaks shrinks, meaning that the films produced at 27.12 MHz are more compact and dense.

i Martins, R.a, Águas Ferreira Fortunato Lebib Roca Cabarrocas Guimarães H. a I. a. "Polymorphous Silicon Films Deposited at 27.12 MHz." Advanced Materials. 15 (2003): 333-337. AbstractWebsite

This paper describes, for the first time, a method of producing polymorphous silicon (pm-Si:H) films by plasma-enhanced (PE) CVD, using an excitation frequency of 27.12 MHz. The aim is to produce, at high growth rates, nanostructured films that are more stable than the conventional amorphous or polymorphous silicon films grown by PECVD at 13.56 MHz. The processing data show that, at 27.12 MHz, the pm-Si:H films are produced close to the transition region from amorphous to microcrystalline silicon films, at a growth rate of about 0.3 nm s-1, using pressures above 160 Pa. Apart from that, the analysis of the exodiffusion, spectroscopic ellipsometry (SE), and micro Raman data reveal that these films are more dense and compact than the polymorphous films grown at 13.56 MHz.

Martins, R.a, Ferreira Fortunato Vieira I. a E. a. "Silicon oxycarbide microcrystalline layers produced by spatial separation techniques." Materials Research Society Symposium Proceedings. Vol. 336. 1994. 55-60. Abstract

Silicon oxycarbide microcrystallinc layers, n- and p-doped, highly conductive and highly transparent have been produced using a Two Consecutive Decomposition and Deposition Chamber (TCDDC) system. The films exhibit suitable properties for optoelectronic applications where wide band gap materials with required conductivity and stability are needed. In this paper we present the role of partial oxygen pressure (po2) in controlling the composition, structure and transport properties (conductivity. δd and optical gap, Eop) of silicon oxycarbide microcrystalline layers. © 1994 Materials Research Society.

Martins, R.a, Almeida Barquinha Pereira Pimentel Ferreira Fortunato P. b P. a. "Electron transport and optical characteristics in amorphous indium zinc oxide films." Journal of Non-Crystalline Solids. 352 (2006): 1471-1474. AbstractWebsite

This paper discusses the electron transport and the optical characteristics of amorphous indium zinc oxide and the role of the oxygen partial pressure on tailoring its properties. The data show that by varying the oxygen partial pressure during the deposition process from 10-3 to 2 × 10-1 Pa, the electrical resistivity varies from about 10-4 to 2 × 101 Ω cm, which corresponds to a variation on the Hall mobility from 60 to 10 cm2 V-1 s-1. The conductivity and mobility analysis show that the transport of carriers is not band tail limited, as happens in conventional disordered semiconductors, but highly dependent on the ionicity and the presence of oxygen vacancies, where mobility is mainly limited by carrier scattering. The optical characteristics inferred from the transmittance data reveal films with optical gaps in the range of 3.68-3.76 eV, very close to the ones observed on crystalline/polycrystalline IZO films (3.7-3.9 eV). © 2006 Elsevier B.V. All rights reserved.

Martins, R., Guimaraes Carvalho L. N. "ROLE OF I. T. O. LAYER ON THE PERFORMANCES OF AMORPHOUS SILICON SOLAR CELLS PRODUCED IN A TWO CONSECUTIVE DECOMPOSITION AND DEPOSITION CHAMBER SYSTEM." Commission of the European Communities, (Report) EUR. 1985. 722-726. Abstract

Amorphous Silicon solar cells have been produced by a two consecutive decomposition and deposition chamber system, using polished S. S. substrates. Through a systematic investigation of the electrical and optical properties of doped and undoped amorphous silicon layers (1) we observe that the deposition conditions (gas partial pressure, density of r. f. power, substrate temperature, electromagnetic static fields applied to the substrate, and gas flow rate) influence films properties. In the course of this investigation we have been studying the role of the sheet resistance, R//s, of the I. T. O. layer on the short circuit current, I//s//c, and on the open circuit voltage, V//o//c, of p. i. n. structures of 16cm**2 in area. The obtained results indicate that V//o//c is almost independent on R//s, while I//s//c variation approaches a square root dependence on R//s.

Martins, R.a, Barquinha Pimentel Pereira Fortunato Kang Song Kim Park Park P. a A. a. "Electron transport in single and multicomponent n-type oxide semiconductors." Thin Solid Films. 516 (2008): 1322-1325. AbstractWebsite

The electron transport in n-type polycrystalline zinc oxide, nanocrystalline Zinc-Gallium-Oxygen and amorphous Indium-Zinc-Oxygen systems produced by rf magnetron sputtering at room temperature, under different oxygen partial pressure were investigated. It was found that the carrier transport is not band tail limited, being governed by metal cations irrespective to the film's structure. The highest net room temperature electron mobility was achieved on the amorphous films and noticed that for the single component oxides the mobility decreases as the carrier concentration increases, while the reverse behaviour was observed for the multicomponent oxides, independently of their structure. These behaviours are related to the role that negative charge defects in excess of 1010 cm- 2 generated on multicomponent oxides have on carriers scattering and so on their electronic performances. © 2007 Elsevier B.V. All rights reserved.

Martins, R., Igreja Ferreira Marques Pimentel Gonçalves Fortunato R. I. A. "Room temperature dc and ac electrical behaviour of undoped ZnO films under UV light." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 118 (2005): 135-140. AbstractWebsite

This paper studies the dc and ac impedance behaviour of undoped ZnO thin films produced by spray pyrolysis and rf magnetron sputtering under UV light illumination, at room temperature, emphasising the role that the crystallite size, structure, surface morphology and the state of surface have on the electrical responsivities obtained. The results achieved show that the sputtered films with crystal sizes of about 4 nm exhibit dc electrical UV responsivities of 108. On the other hand, the spray pyrolysis films exhibit the lowest dc responsivities, due the high crystal sizes and state of surface contamination, to which very good capacitance responses were obtained, mainly due to the degree of porosity exhibit by these films when produced at low temperatures. Based on that, a two-phase electrical model is proposed to explain the set of behaviours observed. © 2005 Elsevier B.V. All rights reserved.

Martins, R., Fortunato E. "Dark current-voltage characteristics of transverse asymmetric hydrogenated amorphous silicon diodes." Journal of Applied Physics. 78 (1995): 3481-3487. AbstractWebsite

The aim of this work is to provide the basis for the interpretation, under steady state and in the low-voltage regime of the dark current-density-voltage (J-V) characteristics of transverse asymmetric amorphous silicon (a-Si:H) p-i-n and n-i-p diodes. The transverse asymmetric a-Si:H diodes present ratios between the metal contact and the underneath doped layer areas larger than five, leading to the inclusion, in the diode equation, of a lateral leakage current, responsible for the high saturation current density and the forward shape of the J-V curves recorded. The leakage current depends on the lateral spatial potential developed with which varies following a power-law dependence. The experimental J-V curves in diodes with the doped layer around the metal contact unetched and etched prove the role and origin of this lateral leakage current and, thus, the proposed model. © 1995 American Institute of Physics.

Martins, R.M., Pereira Siqueira Salomão Freitas S. V. S. "Curcuminoid content and antioxidant activity in spray dried microparticles containing turmeric extract." Food Research International. 50 (2013): 657-663. AbstractWebsite

Curcuma longa L., also known as turmeric, is widely used as a food colorant and has been reported to have antioxidant, anti-inflammatory, anti-mutagenic and anti-cancer properties. The aim of this study was to evaluate the effects of the spray drying on curcuminoid and curcumin contents, antioxidant activity, process yield, the morphology and solubility of the microparticulated solid dispersion containing curcuma extract using a Box Behnken design. The microparticles were spherical in shape, and an increase in outlet temperature from 40 to 80 °C resulted in a significant increase in the yield of microparticles from 16 to 53%. The total curcuminoid content (17.15 to 19.57. mg/g), curcumin content (3.24 to 4.25. mg/g) and antioxidant activity (530.1 to 860.3 μg/mL) were also affected by the spray drying process. The solubility of curcuminoid from C. longa remarkably improved 100-fold in the microparticles, confirming the potential of the ternary solid dispersion technique to improve the dyeing and nutraceutical properties of these compounds. Furthermore, the microparticles were obtained using the spray drying process, can be easily scaled up. © 2011 Elsevier Ltd.