Publications

Export 575 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Martins, R., Pereira Barquinha Correia Gonçalves Ferreira Dias Fortunato L. P. N. "Floating gate memory paper transistor." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 7603. 2010. Abstract

Reported herein is a nonvolatile n-type floating gate memory paper field-effect transistor, emphasizing the role of the paper structure and properties on the device performance recorded such as in the high capacitance per unit area at low frequencies (>2.5 μFcm-2) and so on the set of high charge retention times achieved (>16000 hours). The device was built via the hybrid integration of natural cellulose fibers, which act simultaneously as substrate and gate dielectric, using amorphous indium zinc and gallium indium zinc oxides respectively for the gate electrode and channel layer. This was complemented by the use of continuous patterned metal layers as source/drain electrodes. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Martins, R.a, Lavareda Fortunato Soares Fernandes Ferreira G. a E. a. "A linear array position sensitive detector based on amorphous silicon." Review of Scientific Instruments. 66 (1995): 5317-5321. AbstractWebsite

A linear array thin film position sensitive detector (LTFPSD) based on hydrogenated amorphous silicon (a-Si:H) is proposed for the first time. Taking advantage of the optical properties presented by a-Si:H devices, we have developed a LTFPSD with 128 integrated elements able to be used in 3D inspections/measurements. Each element consists of a one-dimensional LTFPSD, based on a p-i-n diode produced in a conventional PECVD system, where the doped layers are coated with thin resistive layers to establish the required device equipotentials. By proper incorporation of the LTFPSD into an optical inspection camera it will be possible to acquire information about an object/surface, through the optical cross-section method. The main advantages of this system, when compared with the conventional CCDs, are the low complexity of hardware and software used and that the information can be continuously processed (analog detection). © 1995 American Institute of Physics.

Martins, R.M., Pereira Siqueira Salomão Freitas S. V. S. "Curcuminoid content and antioxidant activity in spray dried microparticles containing turmeric extract." Food Research International. 50 (2013): 657-663. AbstractWebsite

Curcuma longa L., also known as turmeric, is widely used as a food colorant and has been reported to have antioxidant, anti-inflammatory, anti-mutagenic and anti-cancer properties. The aim of this study was to evaluate the effects of the spray drying on curcuminoid and curcumin contents, antioxidant activity, process yield, the morphology and solubility of the microparticulated solid dispersion containing curcuma extract using a Box Behnken design. The microparticles were spherical in shape, and an increase in outlet temperature from 40 to 80 °C resulted in a significant increase in the yield of microparticles from 16 to 53%. The total curcuminoid content (17.15 to 19.57. mg/g), curcumin content (3.24 to 4.25. mg/g) and antioxidant activity (530.1 to 860.3 μg/mL) were also affected by the spray drying process. The solubility of curcuminoid from C. longa remarkably improved 100-fold in the microparticles, confirming the potential of the ternary solid dispersion technique to improve the dyeing and nutraceutical properties of these compounds. Furthermore, the microparticles were obtained using the spray drying process, can be easily scaled up. © 2011 Elsevier Ltd.

Martins, R., Ferreira Fortunato I. E. "Growth model of gas species produced by the hot-wire and hot-wire plasma-assisted techniques." Key Engineering Materials. 230-232 (2002): 603-606. AbstractWebsite

The model presented is based on the heat transfer and energy balance equations that rule the set of physical and chemical interactions that take place on the gas phase of a growth process, assuming that the deposition process occurs under laminar dynamic flow conditions (Knudsen number below 1). In these conditions, the chemistry and physics of the process involved in the growth mechanism of silicon thin films produced by the hot wire or the hot-wire plasma assisted technique can be proper derived by balance equations that supply information about how the plasma density, the gas dilution and the gas temperature influence the growth mechanism and the equilibrium of the concentration of species presented on the growth surface. The model developed establishes a relation between the abundance species formed and the parameters initiators of the process such as the filament temperature and the rf power density used.

Martins, R.a, Ferreira Fortunato Vieira I. a E. a. "Silicon oxycarbide microcrystalline layers produced by spatial separation techniques." Materials Research Society Symposium Proceedings. Vol. 336. 1994. 55-60. Abstract

Silicon oxycarbide microcrystallinc layers, n- and p-doped, highly conductive and highly transparent have been produced using a Two Consecutive Decomposition and Deposition Chamber (TCDDC) system. The films exhibit suitable properties for optoelectronic applications where wide band gap materials with required conductivity and stability are needed. In this paper we present the role of partial oxygen pressure (po2) in controlling the composition, structure and transport properties (conductivity. δd and optical gap, Eop) of silicon oxycarbide microcrystalline layers. © 1994 Materials Research Society.

b b b b b b b Martins, R.a b, Figueiredo Silva Águas Soares Marques Ferreira Fortunato J. a V. a. "32 Linear array position sensitive detector based on NIP and hetero a-Si:H microdevices." Journal of Non-Crystalline Solids. 299-302 (2002): 1283-1288. AbstractWebsite

In this paper we present results concerning the performance exhibited by an integrated array of 32 one-dimensional amorphous silicon thin film position sensitive detectors based on nip and hetero amorphous silicon structures, with a total active area size below 1 cm2 linearity, its spatial resolution and response time, that make it one of the most interesting analog detector to be used in unmanned optical inspection control systems where a continuous detection process is required. This opens a wide range of applications for amorphous silicon devices in the area of image processing. © 2002 Elsevier Science B.V. All rights reserved.

Martins, R.a, Ferreira Gonçalves Nunes Fortunato Marvão Martins J. a C. a. "Role of soldering parameters on the electrical performances presented by Cu-Sn-Cu joints used in power diodes." Materials Science and Engineering A. 288 (2000): 275-279. AbstractWebsite

The effects of Sn thickness electrodeposited over Cu on the structural and morphological performance of the joints formed were investigated. The electrical stability of the joints formed was analyzed under extreme aggressive conditions. Results indicated that the proposed soldering technology greatly satisfied the demands concerning soldering specifications.

Martins, R., Guimaraes Carvalho Andrade Corgnier Sanematsu L. N. A. "ANALYSIS OF A NEW PRODUCTION TECHNIQUE FOR AMORPHOUS SILICON SOLAR CELLS." Commission of the European Communities, (Report) EUR. 1984. 778-782. Abstract

This new production technique is based on the growth of a-Si films on a reactor where gas decomposition promoted by a capacitively coupled r. f. power system takes place in a chamber separated from that where amorphous films are deposited under the action of an electromagnetic static field. Using this method, we shall reduce films contamination caused by the residual gas desorbed from reactor walls. At the same time, there is a reduction plasma ion and electron damages on the deposited films. The main species impinging upon our substrates will be mainly composed of long life radicals with high mobilities and high diffusion rates, which will give origin to a random silicon network free of long poly-silane chains.

Martins, R., Águas Silva Ferreira Cabrita Fortunato H. V. I. "Nanostructured silicon films produced by PECVD." Materials Research Society Symposium - Proceedings. Vol. 664. 2001. A961-A966. Abstract

This paper presents the process conditions that lead to the production of nanostructured silicon films grown by plasma enhanced chemical vapour deposition close to the so-called gamma regime (powder formation), highly dense and with low density of bulk states. Thus, the powder management is one important issue to be addressed in this paper. As a general rule we observed that high quality films (low density of states and high μτ products) are obtained when films are grown under low ion bombardment at high hydrogen dilution and deposition pressure conditions, to allow the proper surface passivation and surface activation.

Martins, R., Fortunato Ferreira Dias E. I. C. "Materials Science Forum: Preface." Materials Science Forum. 455-456 (2004): ix-x. AbstractWebsite
n/a
Martins, R., Barquinha Pereira Ferreira Fortunato P. L. I. "Role of order and disorder in covalent semiconductors and ionic oxides used to produce thin film transistors." Applied Physics A: Materials Science and Processing. 89 (2007): 37-42. AbstractWebsite

This paper aims to discuss the effect of order and disorder on the electrical performances of covalent silicon semiconductors and ZnO based ionic oxide semiconductors used as active channel layers in thin film transistors. The effect of disorder on covalent semiconductors directly affects their electrical transport properties due to the asymmetric behaviour of sp states, while in ionic oxide semiconductors it is found that this effect is small due to the fact that angular disorder has no effect on the spherical symmetry of s states. To this we must add that the mobility of carriers in both systems is quite different, being also affected by electron-phonon interactions (weak in silicon and strong in ionic oxides leading to formation of polarons). Besides, the impurity doping effect and the presence of vacancies in disordered silicon and in ionic oxides behave differently, which will influence the thin film properties and so, the performances of the devices produced. © 2007 Springer-Verlag.

Martins, R.F.P.a, Ahnood Correia Pereira Barros Barquinha Costa Ferreira Nathan Fortunato A. b N. a. "Recyclable, flexible, low-power oxide electronics." Advanced Functional Materials. 23 (2013): 2153-2161. AbstractWebsite

The ability to process and dimensionally scale field-effect transistors with and on paper and to integrate them as a core component for low-power-consumption analog and digital circuits is demonstrated. Low-temperature-processed p- and n-channel integrated oxide thin-film transistors in the complementary metal oxide semiconductor (CMOS) inverter architecture are seamlessly layered on mechanically flexible, low-cost, recyclable paper substrates. The possibility of building these circuits using low-temperature processes opens the door to new applications ranging from smart labels and sensors on clothing and packaging to electronic displays printed on paper pages for use in newspapers, magazines, books, signs, and advertising billboards. Because the CMOS circuits reported constitute fundamental building blocks for analog and digital electronics, this development creates the potential to have flexible form factor computers seamlessly layered onto paper. The holistic approach of merging low-power circuitry with a recyclable substrate is an important step towards greener electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

c c Martins, N.a, Canhola Quintela Ferreira Raniero Fortunato Martins P. a M. b. "Performances of an in-line PECVD system used to produce amorphous and nanocrystalline silicon solar cells." Thin Solid Films. 511-512 (2006): 238-242. AbstractWebsite

This paper presents the performances of an in-line plasma enhanced chemical vapor deposition system constituted by 5 chambers and one external unloaded chamber used in the simultaneous manufacturing of 4 large (30 cm × 40 cm) solar cells deposited on glass substrates. The system is fully automatically controlled by a Programmable Logic Controller using a specific developed software that allows devices mass production without losing the flexibility to perform process innovations according to the industrial requests, i.e. fast and secure changes and optimizations. Overall, the process shift is of about 15 min per each set of 4 solar cells. Without a buffer layer, solar cells with efficiencies of about 9% were produced by the proper tuning of the i-layer production conditions. © 2005 Elsevier B.V. All rights reserved.

d c Martins, R.a, Baptista Silva Raniero Doria Franco Fortunato P. b L. a. "Identification of unamplified genomic DNA sequences using gold nanoparticle probes and a novel thin film photodetector." Journal of Non-Crystalline Solids. 354 (2008): 2580-2584. AbstractWebsite

This paper describes a novel colorimetric method for detection of nucleic acid targets in a homogeneous format with improved sensitivity by means of a system based on the combination of a tunable monochromatic light source and an amorphous/nanocrystalline silicon photodetector that detects color and light intensity changes undergone by samples/assays containing tailored gold nanoparticles probes. This new low cost, portable, fast and simple optoelectronic platform, with the possibility to be re-used, permits detection of at least 400 fentomole of specific DNA sequences without target or signal amplification and was applied to the rapid detection of human pathogens in large variety of clinical samples such as Mycobacterium tuberculosis. © 2008 Elsevier B.V. All rights reserved.

Martins, R., Guimaraes Carvalho L. N. "ROLE OF I. T. O. LAYER ON THE PERFORMANCES OF AMORPHOUS SILICON SOLAR CELLS PRODUCED IN A TWO CONSECUTIVE DECOMPOSITION AND DEPOSITION CHAMBER SYSTEM." Commission of the European Communities, (Report) EUR. 1985. 722-726. Abstract

Amorphous Silicon solar cells have been produced by a two consecutive decomposition and deposition chamber system, using polished S. S. substrates. Through a systematic investigation of the electrical and optical properties of doped and undoped amorphous silicon layers (1) we observe that the deposition conditions (gas partial pressure, density of r. f. power, substrate temperature, electromagnetic static fields applied to the substrate, and gas flow rate) influence films properties. In the course of this investigation we have been studying the role of the sheet resistance, R//s, of the I. T. O. layer on the short circuit current, I//s//c, and on the open circuit voltage, V//o//c, of p. i. n. structures of 16cm**2 in area. The obtained results indicate that V//o//c is almost independent on R//s, while I//s//c variation approaches a square root dependence on R//s.

Martins, R., Brás Ferreira Pereira Barquinha Correia Costa Busani Gonçalves Pimentel Fortunato B. I. L. "Away from silicon era: The paper electronics." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 7940. 2011. Abstract

Today there is a strong interest in the scientific and industrial community concerning the use of biopolymers for electronic applications, mainly driven by low-cost and disposable applications. Adding to this interest, we must recognize the importance of the wireless auto sustained and low energy consumption electronics dream. This dream can be fulfilled by cellulose paper, the lightest and the cheapest known substrate material, as well as the Earth's major biopolymer and of tremendous global economic importance. The recent developments of oxide thin film transistors and in particular the production of paper transistors at room temperature had contributed, as a first step, for the development of disposable, low cost and flexible electronic devices. To fulfil the wireless demand, it is necessary to prove the concept of self powered devices. In the case of paper electronics, this implies demonstrating the idea of self regenerated thin film paper batteries and its integration with other electronic components. Here we demonstrate this possibility by actuating the gate of paper transistors by paper batteries. We found that when a sheet of cellulose paper is covered in both faces with thin layers of opposite electrochemical potential materials, a voltage appears between both electrodes - paper battery, which is also self-regenerated. The value of the potential depends upon the materials used for anode and cathode. An open circuit voltage of 0.5V and a short-circuit current density of 1μA/cm2 were obtained in the simplest structure produced (Cu/paper/Al). For actuating the gate of the paper transistor, seven paper batteries were integrated in the same substrate in series, supplying a voltage of 3.4V. This allows proper ON/OFF control of the paper transistor. Apart from that transparent conductive oxides can be also used as cathode/anode materials allowing so the production of thin film batteries with transparent electrodes compatible with flexible, invisible, self powered and wireless electronics. © 2011 SPIE.

Martins, R., Barquinha Pereira Correia Gonçalves Ferreira Fortunato P. L. N. "Selective floating gate non-volatile paper memory transistor." Physica Status Solidi - Rapid Research Letters. 3 (2009): 308-310. AbstractWebsite

Here we report the performance of a selective floating gate (V GS) n-type non-volatile memory paper field-effect transistor. The paper dielectric exhibits a spontaneous polarization of about 1 mCm-2 and GIZO and IZO amorphous oxides are used respectively as the channel and the gate layers. The drain and source regions are based in continuous conductive thin films that promote the integration of fibres coated with the active semiconductor. The floating memory transistor writes, reads and erases the stored information with retention times above 14500 h, and is selective (for VGS > 5 ± 0.1 V). That is, to erase stored information a symmetric pulse to the one used to write must be utilized, allowing to store in the same space different information. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Martins, R.a, Águas Ferreira Fortunato Lebib Cabarrocas Guimarães H. a I. a. "Polymorphous silicon films deposited at 27.12 MHz." Chemical Vapor Deposition. 9 (2003): 333-337. AbstractWebsite

This paper describes, for the first time, a method of producing polymorphous silicon (pm-Si:H) films by plasma-enhanced (PE) CVD, using an excitation frequency of 27.12 MHz. The aim is to produce, at high growth rates, nanostructured films that are more stable than the conventional amorphous or polymorphous silicon films grown by PECVD at 13.56 MHz. The processing data show that, at 27.12 MHz, the pm-Si:H films are produced close to the transition region from amorphous to microcrystalline silicon films, at a growth rate of about 0.3 nms-1, using pressures above 160 Pa. Apart from that, the analysis of the exodiffusion, spectroscopic ellipsometry (SE), and micro Raman data reveal that these films are more dense and compact than the polymorphous films grown at 13.56 MHz.

Martins, R., Fortunato E. "Dark current-voltage characteristics of transverse asymmetric hydrogenated amorphous silicon diodes." Journal of Applied Physics. 78 (1995): 3481-3487. AbstractWebsite

The aim of this work is to provide the basis for the interpretation, under steady state and in the low-voltage regime of the dark current-density-voltage (J-V) characteristics of transverse asymmetric amorphous silicon (a-Si:H) p-i-n and n-i-p diodes. The transverse asymmetric a-Si:H diodes present ratios between the metal contact and the underneath doped layer areas larger than five, leading to the inclusion, in the diode equation, of a lateral leakage current, responsible for the high saturation current density and the forward shape of the J-V curves recorded. The leakage current depends on the lateral spatial potential developed with which varies following a power-law dependence. The experimental J-V curves in diodes with the doped layer around the metal contact unetched and etched prove the role and origin of this lateral leakage current and, thus, the proposed model. © 1995 American Institute of Physics.

b Martins, R.a, Figueiredo Barros Barquinha Gonçalves Pereira Ferreira Fortunato V. a R. a. "P-type oxide-based thin film transistors produced at low temperatures." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 8263. 2012. Abstract

P-type thin-film transistors (TFTs) using room temperature sputtered tin and copper oxide as a transparent oxide semiconductor have been produced on rigid and paper substrates. The SnO x films shows p-type conduction presenting a polycrystalline structure composed with a mixture of tetragonal β-Sn and α-SnO x phases, after annealing at 200°C. These films exhibit a hole carrier concentration in the range of ≈ 10 16-10 18 cm -3, electrical resistivity between 101-102 Ωcm, Hall mobility of 4.8 cm 2/Vs, optical band gap of 2.8 eV and average transmittance ≈ 85 % (400 to 2000 nm). Concerning copper oxide Cu xO thin films they exhibit a polycrystalline structure with a strongest orientation along (111) plane. The Cu xO films produced between an oxygen partial pressure of 9 to 75% showed p-type behavior, as it was measured by Hall effect and Seebeck measurements. The bottom gate p-type SnO x TFTs present field-effect mobility above 1.24 cm 2/Vs (including the paper p-type oxide TFT) and an on/off modulation ratio of 10 3 while the Cu xO TFTs exhibit a field-effect mobility of 1.3×10 -3 cm 2/Vs and an on/off ratio of 2×10 2. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

i Martins, R.a, Águas Ferreira Fortunato Raniero Roca Cabarrocas H. a I. a. "Composition, structure and optical characteristics of polymorphous silicon films deposited by PECVD at 27.12 MHz." Materials Science Forum. 455-456 (2004): 100-103. AbstractWebsite

This paper presents data concerning the composition structure and optical characteristics of polymorphous silicon films produced by plasma enhanced chemical vapour deposition at 27.12 MHz and determined respectively by infrared spectrometry, micro Raman, exodiffusion and spectroscopic ellipsometry measurements. When compared to the pm-Si:H films produced at 13.56 MHz, the films produced at 27.12 MHz present hydrogen contents in the range of 21 at%, the sharp peak ascribed to the exodifusion measurements is shifted towards high temperatures and the imaginary part of the dielectric function 〈ε2〉 is larger and shifted to high energies. Apart from that the peaks of the infrared spectra ascribed to the stretching modes shift towards high wave numbers and the half width of the micro Raman peaks shrinks, meaning that the films produced at 27.12 MHz are more compact and dense.

b b b b b Martins, R.a b, Maçarico Ferreira Nunes Bicho Fortunato A. a I. a. "Investigation of the amorphous to microcrystalline phase transition of thin film silicon produced by PECVD." Thin Solid Films. 317 (1998): 144-148. AbstractWebsite

We have deposited by Plasma Enhanced Chemical Vapour Deposition phosphorus doped amorphous and microcrystalline silicon films, as a function of the RF power (10-300 W), using a PH3/(SiH4 + H2 + He)mixture. It was found that films microcrystallization occurs for powers above 130 W, where a clear phase transition occurs. The microcrystalline films produced present high dark conductivities and optical band gaps, where the crystalline volume fraction is above 25%, as revealed by micro Raman spectroscopy. The Hall mobility have been also determined for amorphous and microcrystalline films, as a function of temperature, in the range 280-340 K. The data show that for the microcrystalline films the conduction is mainly in the extended states of the microcrystals, confirming also the double sign anomaly. That is, for n-type films, the sign is positive for the amorphous case while it is negative for the microcrystalline case. © 1998 Elsevier Science S.A.

i Martins, R.a, Águas Ferreira Fortunato Lebib Roca Cabarrocas Guimarães H. a I. a. "Polymorphous Silicon Films Deposited at 27.12 MHz." Advanced Materials. 15 (2003): 333-337. AbstractWebsite

This paper describes, for the first time, a method of producing polymorphous silicon (pm-Si:H) films by plasma-enhanced (PE) CVD, using an excitation frequency of 27.12 MHz. The aim is to produce, at high growth rates, nanostructured films that are more stable than the conventional amorphous or polymorphous silicon films grown by PECVD at 13.56 MHz. The processing data show that, at 27.12 MHz, the pm-Si:H films are produced close to the transition region from amorphous to microcrystalline silicon films, at a growth rate of about 0.3 nm s-1, using pressures above 160 Pa. Apart from that, the analysis of the exodiffusion, spectroscopic ellipsometry (SE), and micro Raman data reveal that these films are more dense and compact than the polymorphous films grown at 13.56 MHz.

Martins, R., Fortunato E. "Lateral effects in amorphous silicon photodiodes." Optical Materials. 5 (1996): 137-144. AbstractWebsite

The objective of this work is to provide a basis for the interpretation of the a-Si:H photodiode behaviour under low illumination level conditions, where a lateral leakage current plays an important role on the devices' performances when the doped collecting layer can not be considered a true equipotential. To determine this effect, a-Si:H p.i.n devices with small metal dot contacts, matrix distributed, were produced and analysed before and after etching the surrounding doped region of the metal collecting contact. The experimental data fit a model that includes the contribution of a lateral leakage current influencing the J-V characteristics, responsivity and the apparent light degradation behaviour of the device.

Martins, R.a, Pereira Fortunato L. b E. c. "Paper electronics: A challenge for the future." Digest of Technical Papers - SID International Symposium. Vol. 44. 2013. 365-367. Abstract

In this paper we report results concerning the use of paper as substrate and as an electronic component for the next generation of sustainable low cost electronic systems, where different examples of applications are given. © 2013 Society for Information Display.