P-type thin-film transistors (TFTs) using room temperature sputtered tin and copper oxide as a transparent oxide semiconductor have been produced on rigid and paper substrates. The SnO x films shows p-type conduction presenting a polycrystalline structure composed with a mixture of tetragonal β-Sn and α-SnO x phases, after annealing at 200°C. These films exhibit a hole carrier concentration in the range of ≈ 10 16-10 18 cm -3, electrical resistivity between 101-102 Ωcm, Hall mobility of 4.8 cm 2/Vs, optical band gap of 2.8 eV and average transmittance ≈ 85 % (400 to 2000 nm). Concerning copper oxide Cu xO thin films they exhibit a polycrystalline structure with a strongest orientation along (111) plane. The Cu xO films produced between an oxygen partial pressure of 9 to 75% showed p-type behavior, as it was measured by Hall effect and Seebeck measurements. The bottom gate p-type SnO x TFTs present field-effect mobility above 1.24 cm 2/Vs (including the paper p-type oxide TFT) and an on/off modulation ratio of 10 3 while the Cu xO TFTs exhibit a field-effect mobility of 1.3×10 -3 cm 2/Vs and an on/off ratio of 2×10 2. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
cited By 2