Martins, Rodrigo, Fortunato Elvira. "
Simulation of the lateral photo effect in large-area 1D a-Si:H p-i-n thin-film position-sensitive detectors."
Proceedings of SPIE - The International Society for Optical Engineering. Vol. 2397. 1995. 745-756.
AbstractThe aim of this work is to provide the basis for the interpretation, under steady state, of the lateral photoeffect in p-i-n a-Si:H 1D Thin Film Position Sensitive Detectors (1D TFPSD) through an analytical model. The experimental data recorded in 1D TFPSD devices with different performances are compared with the predicted curves and the obtained correlation's discussed.
Fantoni, Alessandro, Vieira Manuela Martins Rodrigo. "
Spatial microscopic/macroscopic control and modeling of the p.i.n devices stability."
Proceedings of SPIE - The International Society for Optical Engineering. Vol. 2397. 1995. 695-702.
AbstractThe introduction into a traditional p.i.n. structure of two defective buffer layers near the p/i and i/n interfaces can improve the device stability and efficiency through an enhancement of the electric field profile at the interfaces and a reduction of the available recombination bulk centers. The defectous layer (`i-layer'), grown at a higher power density, present a high density of the defects and acts as `gettering centers' able to tailor light induced defects under degradation conditions. If the i-layer density of states remains below 1016 eV-1 cm-3 and assuming a Gaussian distribution of defect states, the gettering center distribution will not affect significantly the carrier population but only its spatial distribution. We report here about a device numerical simulation that allows us to analyze the influence of the `i- layer' position, thickness and density of states on the a-Si:H solar cells performances. Results of some systematic simulation rom the ASCA program (Amorphous Solar Cell Analysis), and for different configurations will be presented.
Meng, L., Macarico Martins A. R. "
Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering."
Materials Research Society Symposium - Proceedings. Vol. 388. 1995. 379-384.
AbstractTin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as-deposited film is about 1.3×10-1 Ω* cm and decreases down to 6.9×10-3 Ω* cm as the annealing temperature is increased up to 500°C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping.