Publications

Export 109 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
d c Martins, R.a, Baptista Silva Raniero Doria Franco Fortunato P. b L. a. "Identification of unamplified genomic DNA sequences using gold nanoparticle probes and a novel thin film photodetector." Journal of Non-Crystalline Solids. 354 (2008): 2580-2584. AbstractWebsite

This paper describes a novel colorimetric method for detection of nucleic acid targets in a homogeneous format with improved sensitivity by means of a system based on the combination of a tunable monochromatic light source and an amorphous/nanocrystalline silicon photodetector that detects color and light intensity changes undergone by samples/assays containing tailored gold nanoparticles probes. This new low cost, portable, fast and simple optoelectronic platform, with the possibility to be re-used, permits detection of at least 400 fentomole of specific DNA sequences without target or signal amplification and was applied to the rapid detection of human pathogens in large variety of clinical samples such as Mycobacterium tuberculosis. © 2008 Elsevier B.V. All rights reserved.

Martins, R., Ferreira Cabrita Fortunato I. A. E. "Improvement of a-Si:H device stability and performances by proper design of the interfaces." Journal of Non-Crystalline Solids. 266-269 B (2000): 1094-1098. AbstractWebsite

This paper deals with a new design method for the interfaces of a-Si:H pin solar cells that improves the stability and performances of devices deposited in a single batch chamber process. The method consists in removing a deposited sacrificial layer placed between the p/i and/or i/n interfaces by etching. This layer is an absorber of defects and impurities that are introduced in the interfaces, mainly from the chamber walls cross-contamination and the substrate surface. The results achieved increase the device fill factor and short circuit current density, respectively towards 75% and 16.3 mA cm-2, with a final efficiency of about 10%, before light soaking experiments. © 2000 Elsevier Science B.V. All rights reserved.

b Martins, R.a, Costa Águas Soares Marques Ferreira Borges Pereira Raniero Fortunato D. a H. a. "Insights on amorphous silicon nip and MIS 3D position sensitive detectors." Materials Science Forum. 514-516 (2006): 13-17. AbstractWebsite

This work aims to report results of the spatial and frequency optical detection limits of integrated arrays of 32 one-dimensional amorphous silicon thin film position sensitive detectors with nip or MIS structure, under continuous and pulsed laser operation conditions. The arrays occupy a total active area of 45 mm2 and have a plane image resolution better than 15 μm with a cut-off frequency of about 6.8 kHz. The non-linearity of the array components varies with the frequency, being about 1.6% for 200 Hz and about 4% for the cut-off frequency (6.8 kHz).

Martins, R., Dias Guimarães A. G. L. "The interpretation of the electric and optical properties of a-Si:H films produced by rf glow discharge through dark conductivity, photoconductivity and pulse controlled capacitance-voltage measurements." Journal of Non-Crystalline Solids. 57 (1983): 9-22. AbstractWebsite

This paper deals with the interpretation of transport properties of amorphous silicon hydrogenated films (a-Si:H) through dark conductivity, photoconductivity and pulse controlled capacitance-voltage measurements. a-Si:H films were produced by rf glow discharge coupled either inductively or capacitively to a 3% SiH4/Ar mixture at different crossed electromagnetic static fields. The data concerned with the dark activation energy, photoactivation energy, variation of the density of localized states and photosensitivity, (σph/σd)25°C, of a-Si:H films can account for their optoelectronic properties which are strongly dependent on the deposition parameters. We also observed that crossed electromagnetic static fields applied during film formation influences hydrogen incorporation in a different manner than previously proposed. © 1983.

Martins, R.F.P., Fortunato E. M. C. "Interpretation of the static and dynamic characteristics of 1-D thin film position sensitive detectors based on a-Si:H p-i-n Diodes." IEEE Transactions on Electron Devices. 43 (1996): 2143-2152. AbstractWebsite

In this work, we present a model to interpret the steady-state and the dynamic detection limits of 1-D Thin Film Position Sensitive Detectors (1-D TFPSD) based on p-i-n a-Si:H devices. From this, an equivalent electric circuit is derived and the predicted values are compared with the experimental results obtained in 1-D TFPSD devices, with different sizes. The model is also able to determine the device characteristics that influence the spatial limits and the response time of the device. © 1996 IEEE.

b b b b b Martins, R.a b, Maçarico Ferreira Nunes Bicho Fortunato A. a I. a. "Investigation of the amorphous to microcrystalline phase transition of thin film silicon produced by PECVD." Thin Solid Films. 317 (1998): 144-148. AbstractWebsite

We have deposited by Plasma Enhanced Chemical Vapour Deposition phosphorus doped amorphous and microcrystalline silicon films, as a function of the RF power (10-300 W), using a PH3/(SiH4 + H2 + He)mixture. It was found that films microcrystallization occurs for powers above 130 W, where a clear phase transition occurs. The microcrystalline films produced present high dark conductivities and optical band gaps, where the crystalline volume fraction is above 25%, as revealed by micro Raman spectroscopy. The Hall mobility have been also determined for amorphous and microcrystalline films, as a function of temperature, in the range 280-340 K. The data show that for the microcrystalline films the conduction is mainly in the extended states of the microcrystals, confirming also the double sign anomaly. That is, for n-type films, the sign is positive for the amorphous case while it is negative for the microcrystalline case. © 1998 Elsevier Science S.A.

Martins, R., Fortunato E. "Lateral effects in amorphous silicon photodiodes." Optical Materials. 5 (1996): 137-144. AbstractWebsite

The objective of this work is to provide a basis for the interpretation of the a-Si:H photodiode behaviour under low illumination level conditions, where a lateral leakage current plays an important role on the devices' performances when the doped collecting layer can not be considered a true equipotential. To determine this effect, a-Si:H p.i.n devices with small metal dot contacts, matrix distributed, were produced and analysed before and after etching the surrounding doped region of the metal collecting contact. The experimental data fit a model that includes the contribution of a lateral leakage current influencing the J-V characteristics, responsivity and the apparent light degradation behaviour of the device.

Martins, R., Fortunato E. "Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si:H P-I-N devices." Review of Scientific Instruments. 66 (1995): 2927-2934. AbstractWebsite

The aim of this work is to provide the basis for the interpretation, under steady state conditions, of the lateral photoeffect in p-i-n a-Si:H one-dimensional thin-film position-sensitive detectors (1D TFPSD) and the determination of its linear spatial detection limits, function of the device, and light spot source characteristics. This leads to the development of a model, based on the application of the Poisson, continuity, and current density equations in the p-i-n junction, where two thin resistive layers, as equipotentials, are considered on both sides of the doped layers. The experimental data recorded in 1D TFPSD devices with different performances are compared with the predicted curves and the obtained correlations discussed. © 1995 American Institute of Physics.

Martins, R.a, Lavareda Fortunato Soares Fernandes Ferreira G. a E. a. "A linear array position sensitive detector based on amorphous silicon." Review of Scientific Instruments. 66 (1995): 5317-5321. AbstractWebsite

A linear array thin film position sensitive detector (LTFPSD) based on hydrogenated amorphous silicon (a-Si:H) is proposed for the first time. Taking advantage of the optical properties presented by a-Si:H devices, we have developed a LTFPSD with 128 integrated elements able to be used in 3D inspections/measurements. Each element consists of a one-dimensional LTFPSD, based on a p-i-n diode produced in a conventional PECVD system, where the doped layers are coated with thin resistive layers to establish the required device equipotentials. By proper incorporation of the LTFPSD into an optical inspection camera it will be possible to acquire information about an object/surface, through the optical cross-section method. The main advantages of this system, when compared with the conventional CCDs, are the low complexity of hardware and software used and that the information can be continuously processed (analog detection). © 1995 American Institute of Physics.

Martins, R., Fortunato Ferreira Dias E. I. C. "Materials Science Forum: Preface." Materials Science Forum. 455-456 (2004): ix-x. AbstractWebsite
n/a
Martins, R. "Materials Science Forum: Preface." Materials Science Forum. 382 (2001): V. AbstractWebsite
n/a
Malik, A.a, Sêco Fortunato Martins A. c E. b. "Microcrystalline thin metal oxide films for optoelectronic applications." Journal of Non-Crystalline Solids. 227-230 (1998): 1092-1095. AbstractWebsite

We report the properties and optoelectronic applications of transparent and conductive indium and tin oxide films prepared by the spray pyrolysis method and doped with Sn or F, respectively. The film properties have been measured using X-ray diffraction, optical and electrical absorption. As examples of applications we produced a set of selective optical detectors for different spectral regions, covering the wavelength range from 0.25 to 1.1 μm, based on metal oxide-semiconductor heterostructures and using different substrates such as: GaP, GaSe, AlxGa1-xAs, GaAs and Si. The fabricated devices exhibit several features such as: production simplicity, high quantum efficiency, uniform sensitivity over the entire active area and a high response speed. Finally, we present a high quantum efficiency and solar blind monocrystalline zinc sulphide optical sensor fabricated by spray deposition as an alternative to the ultraviolet-enhanced SiC and GaN photodetectors and the performances of a solar cell. © 1998 Elsevier Science B.V. All rights reserved.

c Martins, R.a, Raniero Pereira Costa Aguas Pereira Silva Goncalves Ferreira Fortunato L. b L. a. "Nanostructured silicon and its application to solar cells, position sensors and thin film transistors." Philosophical Magazine. 89 (2009): 2699-2721. AbstractWebsite

This paper reports the performance of small area solar cells, 128 linear integrated position sensitive detector arrays and thin film transistors based on nanostructured silicon thin films produced by plasma-enhanced chemical vapour deposition technique, close to the onset of dusty plasma conditions, within the transition region from amorphous to microcrystalline. The small area solar cells, produced in a modified single chamber reactor, exhibited very good electrical characteristics with a conversion efficiency exceeding 9%. The 128 integrated position sensitive detector arrays, based on a similar pin structure, allow real-time 3D object imaging with a resolution higher than 90 l p/mm. The thin film transistors produced exhibited field effect mobility of 2.47 cm 2/V/s, threshold voltage of 2 V, on/off ratio larger than 10 7 and sub-threshold slopes of 0.32 V/decade, which are amongst the best results reported for this type of device. © 2009 Taylor & Francis.

Malik, A.a, Sêco Fortunato Martins Shabashkevich Piroszenko A. a E. a. "A new high ultraviolet sensitivity FTO-GaP Schottky photodiode fabricated by spray pyrolysis." Semiconductor Science and Technology. 13 (1998): 102-107. AbstractWebsite

A new high quantum efficiency gallium phosphide Schottky photodiode has been developed by spray deposition of heavily doped tin oxide films on n-type epitaxial structures, as an alternative to the conventional Schottky photodiodes using a semitransparent gold electrode. It is shown that fluorine-doped tin oxide films are more effective as transparent electrodes than tin-doped indium oxide films. The proposed photodiodes have a typical responsivity near 0.33 A W-1 at 440 nm and an unbiased internal quantum efficiency close to 100%, in the range from 250 to 450 nm. The model used to calculate the internal quantum efficiency (based on the optical constants of tin oxide films and gallium phosphide epitaxial layers) is found to be in good agreement with the experimental results. The data show that the quantum efficiency is strongly dependent on the thickness of the transparent electrode, owing to optical interference effects. The noise equivalent power for 440 nm is 2.7 × 10-15 W Hz-1/2, which indicates that these photodiodes can be used for accurate measurements in the short-wavelength range, even in the presence of stronger infrared background radiation.

Martins, R., Águas Cabrita Tonello Silva Ferreira Portunato Guimares H. A. P. "New nanostructured silicon films grown by pecvd technique under controlled powder formation conditions." Solar Energy. 69 (2000): 263-269. AbstractWebsite

In this paper the influence of the DC grid bias on the plasma impedance and the I-V behaviour of silane plasmas used to grow undoped amorphous silicon films by plasma enhanced chemical vapour deposition technique using a triode configuration at or close to the powder regime is studied. The aim is to determine the correlation between the r.f. power and the DC grid voltage with the plasma parameters, under isothermal gas conditions. The results should lead to the production of nanostructured films, with the required optoelectronic characteristics for photovoltaic applications. The results achieved show the existence of a boundary region close to the γ-regime (powder formed) where nanoparticles can be formed by moderated ion bombardment of the growing surface. This is characterised by the plasma resistance of the same order of magnitude of the plasma reactance. Under this condition, it is possible to grow amorphous silicon films that can incorporate nanoparticles, exhibiting photosensitivities of about 107 (two orders of magnitude larger than the one exhibited by films grown under conventional conditions) with densities of states determined by the constant photocurrent method below 3 × 1015 cm3. Apart from that, the growth of the films is less affected by light soaking than the conventional films grown by standard techniques. © 2001 Elsevier Science Ltd. All rights reserved.

Martins, R., Ferreira Cabrita Águas Silva Fortunato I. A. H. "New steps to improve a-Si:H device stability by design of the interfaces." Advanced Engineering Materials. 3 (2001): 170-173. AbstractWebsite
n/a
Malik, A.a, Sêco Fortunato Martins A. b E. a. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications. © 1998 Elsevier Science S.A. All rights reserved.

Malik, A., Seco Fortunate Martins A. E. R. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications.

b Marques, A.C.a c, Santos Costa Dantas Duarte Gonçalves Martins Salgueiro Fortunato L. a M. N. "Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes." Scientific Reports. 5 (2015). AbstractWebsite

Electrochemically active bacteria (EAB) have the capability to transfer electrons to cell exterior, a feature that is currently explored for important applications in bioremediation and biotechnology fields. However, the number of isolated and characterized EAB species is still very limited regarding their abundance in nature. Colorimetric detection has emerged recently as an attractive mean for fast identification and characterization of analytes based on the use of electrochromic materials. In this work, WO 3 nanoparticles were synthesized by microwave assisted hydrothermal synthesis and used to impregnate non-treated regular office paper substrates. This allowed the production of a paper-based colorimetric sensor able to detect EAB in a simple, rapid, reliable, inexpensive and eco-friendly method. The developed platform was then tested with Geobacter sulfurreducens, as a proof of concept. G. sulfurreducens cells were detected at latent phase with an RGB ratio of 1.10 ± 0.04, and a response time of two hours.

Maçarico, A.a, Vieira Fantoni Louro Sêco Martins Hollenstein M. a A. a. "On the a-Si:H film growth: The role of the powder formation." Journal of Non-Crystalline Solids. 198-200 (1996): 1207-1211. AbstractWebsite

Results are presented which are geared towards an understanding of the influence of powder formation during film growth. Plasma chemistry is correlated with the morphology, structure (inferred through infrared spectroscopy, scanning electron microscopy and X-ray diffraction) electro-optical and density of states of intrinsic films deposited under continuous and power modulated operation. Results show that for modulation frequencies where no powder formation occurs and low substrate temperatures T (150°C), silane decomposition gives rise to the growth of inhomogeneous films while in the high modulation frequency regime, at the same temperature, the anions and powder are trapped resulting in films with high deposition rates and low defect density.

Mei, S.a, Yang Ferreira Martins J. a J. M. "Optimisation of parameters for aqueous tape-casting of cordierite-based glass ceramics by Taguchi method." Materials Science and Engineering A. 334 (2002): 11-18. AbstractWebsite

Aqueous suspensions of cordierite-based glass ceramics were prepared by using four types of dispersants and binders and different solids loading. The experiments were designed according to the Taguchi method, which shows great advantages in optimising more than two factors that need to be considered in an experimental design. Different parameters such as the type and concentration of the dispersants and the binders, and the solids loading were optimised to obtain homogeneous and crack-free green tapes. Dolapix CE 64 (1.0 wt.%) and Duramax B-1080 or Duramax B-1070 (10 wt.%) with 65 wt.% solids loading represent an optimal selection of the parameters to obtain low viscosity suspension, and crack-free green tapes with the highest green and sintered density. Microstructural differences between crack-free and cracked samples were observed by scanning electron microscopy (SEM). The crack-free green tapes show homogenous microstructures from top to bottom with organic additives uniformly surrounding the powders, whereas cracked samples exhibit heterogeneous microstructures and non-uniform distribution of the organics. © 2002 Elsevier Science B.V. All rights reserved.

Martins, R., Ferreira Fernandas Fortunato I. B. E. "Performances of a-Si:H films produced by hot wire plasma assisted technique." Vacuum. 52 (1999): 203-208. AbstractWebsite

This work reports on the performances of undoped and doped amorphous/nanocrystalline silicon films grown by hot wire plasma assisted technique. The structure (including the presence of several nanoparticles with sizes ranging from 5 nm to 50 nm), composition (oxygen and hydrogen content) and transport properties of the films are highly dependent on the temperature of the filament and on the hydrogen dilution. The undoped films grown under low r.f. power (≈4mWcm-2) and filament temperatures around 1850 K present dark conductivities below 10-10 Scm-1, optical gaps of about 1.6 eV and photosensitivities above 105, (under AM 1.5 light intensities), with almost no traces of oxygen content. For the n- and the p-doped silicon films also fabricated under the same conditions the conductivities obtained are of about 10-2Scm-1 and 10-5Scm-1, respectively. © 1998 Elsevier Science Ltd. All rights reserved.

c c Martins, N.a, Canhola Quintela Ferreira Raniero Fortunato Martins P. a M. b. "Performances of an in-line PECVD system used to produce amorphous and nanocrystalline silicon solar cells." Thin Solid Films. 511-512 (2006): 238-242. AbstractWebsite

This paper presents the performances of an in-line plasma enhanced chemical vapor deposition system constituted by 5 chambers and one external unloaded chamber used in the simultaneous manufacturing of 4 large (30 cm × 40 cm) solar cells deposited on glass substrates. The system is fully automatically controlled by a Programmable Logic Controller using a specific developed software that allows devices mass production without losing the flexibility to perform process innovations according to the industrial requests, i.e. fast and secure changes and optimizations. Overall, the process shift is of about 15 min per each set of 4 solar cells. Without a buffer layer, solar cells with efficiencies of about 9% were produced by the proper tuning of the i-layer production conditions. © 2005 Elsevier B.V. All rights reserved.

Martins, R. "Physica Status Solidi (A) Applications and Materials: Preface." Physica Status Solidi (A) Applications and Materials Science. 206 (2009): 2121. AbstractWebsite
n/a
i Martins, R.a, Águas Ferreira Fortunato Lebib Roca Cabarrocas Guimarães H. a I. a. "Polymorphous Silicon Films Deposited at 27.12 MHz." Advanced Materials. 15 (2003): 333-337. AbstractWebsite

This paper describes, for the first time, a method of producing polymorphous silicon (pm-Si:H) films by plasma-enhanced (PE) CVD, using an excitation frequency of 27.12 MHz. The aim is to produce, at high growth rates, nanostructured films that are more stable than the conventional amorphous or polymorphous silicon films grown by PECVD at 13.56 MHz. The processing data show that, at 27.12 MHz, the pm-Si:H films are produced close to the transition region from amorphous to microcrystalline silicon films, at a growth rate of about 0.3 nm s-1, using pressures above 160 Pa. Apart from that, the analysis of the exodiffusion, spectroscopic ellipsometry (SE), and micro Raman data reveal that these films are more dense and compact than the polymorphous films grown at 13.56 MHz.