Karlovich, Alexei Yu. "
Some algebras of functions with Fourier coefficients in weighted Orlicz sequence spaces."
Operator Theoretical Methods and Applications to Mathematical Physics. The Erhard Meister Memorial Volume. Operator Theory: Advances and Applications, 147. Eds. Israel Gohberg, Wolfgang Wendland, António Ferreira dos Santos, Frank-Ollme Speck, and Francisco Sepúlveda Teixeira. Basel: Birkhäuser, 2004. 287-296.
AbstractIn this paper, the author proves that the set of all integrable functions whose sequences of negative (resp. nonnegative) Fourier coefficients belong to \(\ell^1\cap\ell^\Phi_{\varphi,w}\) (resp. to \(\ell^1\cap\ell^\Psi_{\psi,\varrho}\)), where \(\ell^\Phi_{\varphi,w}\) and \(\ell^\Psi_{\psi,\varrho}\) are two-weighted Orlicz sequence spaces, forms an algebra under pointwise multiplication whenever the weight sequences
\[
\varphi=\{\varphi_n\},\quad
\psi=\{\psi_n\},\quad
w=\{w_n\},\quad
\varrho=\{\varrho_n\}
\]
increase and satisfy the \(\Delta_2\)-condition.
Musat, V. a, B. b Teixeira, E. b Fortunato, R. C. C. b Monteiro, and P. c Vilarinho. "
Al-doped ZnO thin films by sol-gel method."
Surface and Coatings Technology. 180-181 (2004): 659-662.
AbstractTransparent and conductive high preferential c-axis oriented ZnO thin films doped with Al have been prepared by sol-gel method using zinc acetate and aluminium chloride as cations source, 2-methoxiethanol as solvent and monoethanolamine as sol stabilizer. Film deposition was performed by dip-coating technique at a withdrawal rate of 1.5 cm min-1 on Corning 1737 glass substrate. The effect of dopant concentration, heating treatment and annealing in reducing atmosphere on the microstructure as well as on the electrical and optical properties of the thin films is discussed. The optical transmittance spectra of the films showed a very good transmittance, between 85 and 95%, within the visible wavelength region. The minimum resistivity of 1.3 × 10-3 Ω cm was obtained for the film doped with 2 wt.% Al, preheated at 400 °C and post-heated at 600 °C, after annealing under a reduced atmosphere of forming gas. © 2003 Elsevier B.V. All rights reserved.
Mei, S.a, Yang Ferreira Martins J. a J. M. "
Aqueous tape casting of low-k cordierite substrate: The influence of glass content."
Materials Science Forum. 455-456 (2004): 168-171.
AbstractThick films of cordierite-based glass ceramics were prepared by aqueous tape casting from suspensions containing 80-wt% solids. The weight proportions of cordierite/glass ranged from 70/30 to 30/70 in order to investigate the effect of glass content on the rheological behaviour and on the microstructures and properties of the green tapes. Suspensions with 50 to 60-wt% glass content exhibited the lowest viscosity values among all the slurries investigated, while the green tape containing 30-wt% glass presented homogenous microstructures at both top and bottom surfaces, contrarily to the observations for the other compositions. The green densities increased with glass content. The sintered tapes (1150°C, 2h) containing 50 to 60-wt% glass exhibited the lowest values for the dielectric constant (∼5.2) and dielectric loss (∼0.002) at 1MHz.
Raniero, L., Águas Pereira Fortunato Ferreira Martins H. L. E. "
Batch processing method to deposit a-Si:H films by PECVD."
Materials Science Forum. 455-456 (2004): 104-107.
AbstractThis work reports a technique to obtain electronic grade intrinsic amorphous silicon using the plasma enhanced chemical vapour deposition technique at 13.56 MHz. The batch processing method consists of igniting the plasma process through a neutral gas such as hydrogen or helium and only feeding the carrier gas containing the species to be decomposed into the reactor when the plasma is stabilized. By doing so, no surface damage is induced in the first deposited layers and so a more compacted and stable film is produced, compared to amorphous films grown by conventional methods. The best deposition conditions to produce films with good transport properties for optoelectronic applications are: temperature ≈ 473 K, 60 < pressure 87 Pa, power density of 32 mW/cm2 and flow of silane ≈ 10 sccm. The growth rate and the microstructure factor are 1.5 Å/s and 3.3×10-2, respectively, while the activation energy ≈ 0.8 eV; dark conductivity at room temperature ≈ 4.37×10-10 (ωcm)-1; photosensiti-vity ≈ 5.02×l06; density of states ≈ 6.6×1015 cm-3; bonded hydrogen concentration ≈ 20 at% and optical band gap ≈ 1.75 eV.
Zhang, S., Raniero Fortunato Pereira Martins Canhola Ferreira Nedev Águas Martins L. E. L. "
Characterization of silicon carbide thin films prepared by VHF-PECVD technology."
Journal of Non-Crystalline Solids. 338-340 (2004): 530-533.
AbstractA series of hydrogenated amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition (PECVD) using a gas mixture of silane, methane, and hydrogen as the reactive source and an excitation frequency of 27.12 MHz. Compared to the typical radio frequency deposition technique, the very high plasma excitation frequency increases the density of the electrons and decreases the electron temperature, which helps the dissociation of the SiH4 and CH4, and reduces the energetic ion impact on the growth surface of the thin film. Thus, dense-films with lower bulk density of states and higher growth rate are expected, as confirmed by spectroscopic ellipsometry data. Apart from that, a substantial reduction of bulk defects is achieved, allowing an improvement of the valence controllability (widening of the optical gap from about 1.9 to 3.6 eV). In this work results concerning the microstuctural and photoelectronic properties of the silicon carbide films will be discussed in detail, correlating them with the deposition process conditions used as well as with the gas phase composition of the mixtures used. © 2004 Elsevier B.V. All rights reserved.
Raniero, L., Pereira Zhang Ferreira Águas Fortunato Martins L. S. I. "
Characterization of the density of states of polymorphous silicon films produced at 13.56 and 27.12 MHz using CPM and SCLC techniques."
Journal of Non-Crystalline Solids. 338-340 (2004): 206-210.
AbstractThe aim of this paper is to compare the density of bulk states (DOS) of polymorphous silicon (pm-Si:H) films produced by plasma enhanced chemical vapor deposition at 13.56 and 27.12 MHz using the constant photocurrent method and the space charge limited current (SCLC) technique. The data achieved revealed that the set of films produced present similar DOS. Apart from that, data concerning the correlation of the deposition conditions that lead to the production of pm-Si:H as well as their characteristics, such as the hydrogen content and how hydrogen is bonded, will be discussed, giving special emphasis to the set of mechanical stresses developed. By doing so we could get a better understanding of the nature of hydrogen bonding in pm-Si:H films as well as to determine the role of the excitation frequency on the film's performances, where films with amounts of hydrogen around 20 at.% can have DOS as low as 8 × 10 14 cm-3 with Urbach energies in the range of 41-50 meV. © 2004 Elsevier B.V. All rights reserved.