Publications

Export 575 results:
Sort by: Author Title [ Type  (Desc)] Year
Journal Article
Pereira, L., Águas Gomes Barquinha Fortunato Martins H. L. P. "Nanostructured silicon based thin film transistors processed in the plasma dark region." Journal of Nanoscience and Nanotechnology. 10 (2010): 2938-2943. AbstractWebsite

Nanostructured silicon (na-Si:H) thin films were fabricated using plasma enhanced chemical vapour deposition (PECVD) technique under high silane hydrogen dilution and a discharge frequency of 27 MHz, where the substrate was located in the dark region of the plasma, protected by a grounded metal grid. By not exposing the growth surface directly to the plasma we avoid the silicon growth surface to sustain a high ion bombardment leading to a less defective surface and highly compact films. The intrinsic films grown under these conditions were used to produce the channel region of thin film transistors (TFTs) with a bottom gate staggered configuration, integrating different dielectric layers. The devices produced exhibit a field effect mobility close to 1.84 cm 2 V -1S -1, threshold voltage around 2 V, on/off ratio above 10 7 and sub-threshold slope below 0.5 V/decade, depending on the dielectric used. Copyright © 2010 American Scientific Publishers All rights reserved.

Seiroco, H., Vincente Ferreira Fernandes Marvão Martins Fortunato Martins M. J. F. "New adhesion process based on lead-free solder applied in electronic power devices." Key Engineering Materials. 230-232 (2002): 92-95. AbstractWebsite

The aim of this paper is to present a set of electric data concerning the performances before and after ageing of Cu-Sn-Cu joins used to solder power diodes and to compare the results achieved with the ones obtained in diodes soldered using the conventional technology. The set of results achieved show that the Cu-Sn-Cu joins present even better performances than the ones exhibited by diodes soldered using the conventional technology, without requiring the use of Mo discs to be inserted between the silicon crystal and the metal contacts (stud or finger) to compensate thermal mismatches.

Fortunato, E., Barquinha Gonçalves Pereira Martins P. G. L. "New amorphous oxide semiconductor for thin film transistors (TFTs)." Materials Science Forum. 587-588 (2008): 348-352. AbstractWebsite

Thin film transistors (TFTs) have been produced by rf magnetron sputtering at room temperature, using non conventional oxide materials like amorphous indium-zinc-oxide (IZO) semiconductor, for the channel as well as for the drain and source regions. The obtained TFTs operate in the enhancement mode with threshold voltages of 2.4 V, saturation mobility of 22.7 cm2/Vs, gate voltage swing of 0.44 V/dec and an ON/OFF current ratio of 7×10 7. The high performances presented by these TFTs associated to a high electron mobility, at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and a low threshold voltage, opens new doors for applications in flexible, wearable, disposable portable electronics as well as battery-powered applications.

Assunção, V., Fortunato Marques Gonçalves Ferreira Águas Martins E. A. A. "New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering." Thin Solid Films. 442 (2003): 102-106. AbstractWebsite

Gallium-doped zinc oxide films were prepared by r.f. magnetron sputtering at room temperature as a function of the substrate-target distance. The best results were obtained for a distance of 10 cm, where a resistivity as low as 2. 7 × 10-4 Ω cm, a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3 × 1021 cm-3 were achieved. The films are polycrystalline presenting a strong crystallographic c-axis orientation (002) perpendicular to the substrate. The films present an overall transmittance in the visible part of the spectra of approximately 85%, on average. © 2003 Elsevier B.V. All rights reserved.

Fortunato, E.a, Gonçalves Marques Viana Águas Pereira Ferreira Vilarinho Martins A. a A. a. "New developments in gallium doped zinc oxide deposited on polymeric substrates by RF magnetron sputtering." Surface and Coatings Technology. 180-181 (2004): 20-25. AbstractWebsite

Gallium-doped zinc oxide (GZO) thin films have been deposited onto polyethylene naphthalate (PEN) substrates by r.f. magnetron sputtering at room temperature. The influence of the film thickness (from 70 to 890 nm) on the electrical, structural and morphological properties are presented. The lowest resistivity obtained was 5 × 10-4 Ω cm with a Hall mobility of 13.7 cm2/Vs and a carrier concentration of 8.6 × 1020 cm-3. These values were obtained by passivating the surface of the polymer with a thin silicon dioxide, so preventing the moisture and oxygen permeation inside the film. © 2003 Elsevier B.V. All rights reserved.

Malik, A.a, Sêco Fortunato Martins Shabashkevich Piroszenko A. a E. a. "A new high ultraviolet sensitivity FTO-GaP Schottky photodiode fabricated by spray pyrolysis." Semiconductor Science and Technology. 13 (1998): 102-107. AbstractWebsite

A new high quantum efficiency gallium phosphide Schottky photodiode has been developed by spray deposition of heavily doped tin oxide films on n-type epitaxial structures, as an alternative to the conventional Schottky photodiodes using a semitransparent gold electrode. It is shown that fluorine-doped tin oxide films are more effective as transparent electrodes than tin-doped indium oxide films. The proposed photodiodes have a typical responsivity near 0.33 A W-1 at 440 nm and an unbiased internal quantum efficiency close to 100%, in the range from 250 to 450 nm. The model used to calculate the internal quantum efficiency (based on the optical constants of tin oxide films and gallium phosphide epitaxial layers) is found to be in good agreement with the experimental results. The data show that the quantum efficiency is strongly dependent on the thickness of the transparent electrode, owing to optical interference effects. The noise equivalent power for 440 nm is 2.7 × 10-15 W Hz-1/2, which indicates that these photodiodes can be used for accurate measurements in the short-wavelength range, even in the presence of stronger infrared background radiation.

Brida, D., Fortunato Águas Silva Marques Pereira Ferreira Martins E. H. V. "New insights on large area flexible position sensitive detectors." Journal of Non-Crystalline Solids. 299 (2002): 1272-1276. AbstractWebsite

In this paper we present an improved version of large area (5 mm × 80 mm) flexible position sensitive detectors deposited on polyimide (Kapton® VN) substrates with 75 μm thickness, produced by plasma enhanced chemical vapor deposition (PECVD). The structures presented by the sensors are Kapton/ZnO:Al/(pin)a-Si:H/Al and the heterostructure Kapton/Cr/(in)a-Si:H/ZnO:Al. These sensors were characterized by spectral response, photocurrent dependence as a function of light intensity and position detectability measurements. The set of data obtained on one-dimensional position sensitive detectors based on the heterostructure show excellent performances with a maximum spectral response of 0.12 A/W at 500 nm and a non-linearity of ±10%. © 2002 Elsevier Science B.V. All rights reserved.

Fortunato, E., Martins R. "New materials for large-area position-sensitive detectors." Sensors and Actuators, A: Physical. 68 (1998): 244-248. AbstractWebsite

Large-area thin-film position-sensitive detectors (TFPSDs) using the hydrogenated amorphous silicon (a-Si:H) technology are presented. The detection accuracy of these devices (lengths of about 80 mm) is better than ±0.5% of the value of the full scale of the sensor, the spatial resolution is better than ±20 μm, the non-linearities measured are below ±2% and the frequency response is in the range of a few kilohertz, compatible with the sampling frequency of most electromechanical assembling/control systems. The obtained results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems. © 1998 Elsevier Science S.A. All rights reserved.

Fortunato, Elvira, Martins Rodrigo. "New materials for large-area position-sensitive detectors." Sensors and Actuators, A: Physical. 68 (1998): 244-248. AbstractWebsite

Large-area thin-film position-sensitive detectors (TFPSDs) using the hydrogenated amorphous silicon (a-Si:H) technology are presented. The detection accuracy of these devices (lengths of about 80 mm) is better than ±0.5% of the value of the full scale of the sensor, the spatial resolution is better than ±20 μm, the non-linearities measured are below ±2% and the frequency response is in the range of a few kilohertz, compatible with the sampling frequency of most electromechanical assembling/control systems. The obtained results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems.

Gonçalves, C.a, Ferreira Fortunato Ferreira Martins Marvão Martins Harder Oppelt J. a E. a. "New metallurgical systems for electronic soldering applications." Sensors and Actuators, A: Physical. 74 (1999): 70-76. AbstractWebsite

The aim of this paper is to present results on a new soldering process based on the low-temperature solidification of intermetallic phases from the system Cu-Sn-Cu which can be employed to form a heat-resistant die-attach as well as signal and power electric contacts. Because of the total transformation into intermetallic phase, the working temperature of the bond formed is several hundred degrees Celsius higher than the process temperature (around 250°C). This process leads to a homologous temperature T/Tm of about 0.3 compared to 0.7 in the case of soft SnAg solder alloy. Therefore a better reliability of the proposed bonding process is achievable. Results of the match of the predicted volume fraction of the intermetallic forms and the experimentally measured contact volume would be also discussed, for contacts formed in power diodes.

Martins, R., Águas Cabrita Tonello Silva Ferreira Portunato Guimares H. A. P. "New nanostructured silicon films grown by pecvd technique under controlled powder formation conditions." Solar Energy. 69 (2000): 263-269. AbstractWebsite

In this paper the influence of the DC grid bias on the plasma impedance and the I-V behaviour of silane plasmas used to grow undoped amorphous silicon films by plasma enhanced chemical vapour deposition technique using a triode configuration at or close to the powder regime is studied. The aim is to determine the correlation between the r.f. power and the DC grid voltage with the plasma parameters, under isothermal gas conditions. The results should lead to the production of nanostructured films, with the required optoelectronic characteristics for photovoltaic applications. The results achieved show the existence of a boundary region close to the γ-regime (powder formed) where nanoparticles can be formed by moderated ion bombardment of the growing surface. This is characterised by the plasma resistance of the same order of magnitude of the plasma reactance. Under this condition, it is possible to grow amorphous silicon films that can incorporate nanoparticles, exhibiting photosensitivities of about 107 (two orders of magnitude larger than the one exhibited by films grown under conventional conditions) with densities of states determined by the constant photocurrent method below 3 × 1015 cm3. Apart from that, the growth of the films is less affected by light soaking than the conventional films grown by standard techniques. © 2001 Elsevier Science Ltd. All rights reserved.

Martins, R., Ferreira Cabrita Águas Silva Fortunato I. A. H. "New steps to improve a-Si:H device stability by design of the interfaces." Advanced Engineering Materials. 3 (2001): 170-173. AbstractWebsite
n/a
Fortunate, E.a, Ferreira Giuliani Wurmsdobler Martins I. a F. a. "New ultra-light flexible large area thin film position sensitive detector based on amorphous silicon." Journal of Non-Crystalline Solids. 266-269 B (2000): 1213-1217. AbstractWebsite

In this paper we report on large area one dimensional (1D) amorphous silicon position sensors deposited on flexible polymer foil substrate. The pin sensor structure was deposited by rf plasma enhanced chemical vapour deposition (PECVD). For the electrical and optical characterisation the sensors have been mounted on a convex holder with a 14-mm radius-of-curvature, since the main goal of this work is to develop a flexible position sensor to be incorporated in a micromotor in order to measure its angular velocity continuously. The obtained sensors present adequate performances concerning the position non-linearity (±1% in 20 mm length), comparable to those fabricated on glass substrates. © 2000 Elsevier Science B.V. All rights reserved.

Malik, A.a, Sêco Fortunato Martins A. b E. a. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications. © 1998 Elsevier Science S.A. All rights reserved.

Malik, A., Seco Fortunate Martins A. E. R. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications.

Pereira, L.a, Martins Schell Fortunato Martins R. M. S. b. "Nickel-assisted metal-induced crystallization of silicon: Effect of native silicon oxide layer." Thin Solid Films. 511-512 (2006): 275-279. AbstractWebsite

This work focuses on the role of the native oxide layer (SiO2) on the nickel (Ni)-assisted crystallization of amorphous silicon (a-Si). In some samples, the native oxide was removed using a HF-diluted solution before Ni layers with 0.5 nm be deposited on a-Si. The results show that the presence of a thin SiO2 layer of about 3 nm between the a-Si and the Ni delays the crystallization process. Ellipsometry data show that, after annealing for 5 h at 500 °C, the HF-cleaned sample presents a crystalline fraction of 88%, while the one with the native oxide has only 35%. This difference disappears after 20 h where both samples present similar crystalline fraction. These facts are also reflected on the film's electrical properties, where the activation energy for samples annealed for 5 h rises from 0.42 eV to 0.55 eV, when the oxide layer is removed. After 20 h and 30 h, the activation energy is around 0.55 eV for both kinds of samples, meaning that films with similar electrical properties are now obtained. However, the XRD data suggest the presence of some structural differences attributed to slight differences on the crystallization process. © 2005 Elsevier B.V. All rights reserved.

Santos, V.a, Borges Ranito Pires Araújo Marques Tomás Fortunato Martins Nunes J. P. a C. "Novel multilayer coatings on polyethylene for acetabular devices." Materials Science Forum. 514-516 (2006): 868-871. AbstractWebsite

Total hip replacement is a common practice in every day clinical work. Artificial hip implants consist of a femoral component and an acetabular component. Nowadays the acetabular component is composed of a polymeric cup and a metallic shell. This study focuses the development of an innovative acetabular component substituting the metallic shell by a multilayer coating on the acetabular cup. A titanium coating was deposited onto ultra-high molecular weight polyethylene (UHMWPE) samples by physical vapour deposition (PVD), having an in situ pre-treatment with argon ion bombardment in order to optimize the adhesive strength by surface modification, followed by the deposition of a thin film of hydroxyapatite (HA) using rf magnetron sputtering technique, at room temperature. Results obtained seem to indicate that these multilayer coatings can be a viable alternative to the metallic shell, leading to the substitution of a two part for a one part acetabular component.

Fernandes, M.a, Vieira Martins M. a R. b. "Novel structure for large area image sensing." Sensors and Actuators, A: Physical. 115 (2004): 357-361. AbstractWebsite

This work presents preliminary results in the study of a novel structure for a laser scanned photodiode (LSP) type of image sensor. In order to increase the signal output, a stacked p-i-n-p-i-n structure with an intermediate light-blocking layer is used. The image and the scanning beam are incident through opposite sides of the sensor and their absorption is kept in separate junctions by an intermediate light-blocking layer. As in the usual LSP structure the scanning beam-induced photocurrent is dependent on the local illumination conditions of the image. The main difference between the two structures arises from the fact that in this new structure the image and the scanner have different optical paths leading to an increase in the photocurrent when the scanning beam is incident on a region illuminated on the image side of the sensor, while a decreasing in the photocurrent was observed in the single junction LSP. The results show that the structure can be successfully used as an image sensor even though some optimization is needed to enhance the performance of the device. © 2004 Elsevier B.V. All rights reserved.

Panigrahi, S., Calmeiro Martins Nunes Fortunato T. R. D. "Observation of Space Charge Dynamics Inside an All Oxide Based Solar Cell." ACS Nano. 10 (2016): 6139-6146. AbstractWebsite

The charge transfer dynamics at interfaces are fundamental to know the mechanism of photovoltaic processes. The internal potential in solar cell devices depends on the basic processes of photovoltaic effect such as charge carrier generation, separation, transport, recombination, etc. Here we report the direct observation of the surface potential depth profile over the cross-section of the ZnO nanorods/Cu2O based solar cell for two different layer thicknesses at different wavelengths of light using Kelvin probe force microscopy. The topography and phase images across the cross-section of the solar cell are also observed, where the interfaces are well-defined on the nanoscale. The potential profiling results demonstrate that under white light illumination, the photoinduced electrons in Cu2O inject into ZnO due to the interfacial electric field, which results in the large difference in surface potential between two active layers. However, under a single wavelength illumination, the charge carrier generation, separation, and transport processes between two active layers are limited, which affect the surface potential images and corresponding potential depth profile. Because of changes in the active layer thicknesses, small variations have been observed in the charge carrier transport mechanism inside the device. These results provide the clear idea about the charge carrier distribution inside the solar cell in different conditions and show the perfect illumination condition for large carrier transport in a high performance solar cell. © 2016 American Chemical Society.

b Marques, A.C.a c, Santos Costa Dantas Duarte Gonçalves Martins Salgueiro Fortunato L. a M. N. "Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes." Scientific Reports. 5 (2015). AbstractWebsite

Electrochemically active bacteria (EAB) have the capability to transfer electrons to cell exterior, a feature that is currently explored for important applications in bioremediation and biotechnology fields. However, the number of isolated and characterized EAB species is still very limited regarding their abundance in nature. Colorimetric detection has emerged recently as an attractive mean for fast identification and characterization of analytes based on the use of electrochromic materials. In this work, WO 3 nanoparticles were synthesized by microwave assisted hydrothermal synthesis and used to impregnate non-treated regular office paper substrates. This allowed the production of a paper-based colorimetric sensor able to detect EAB in a simple, rapid, reliable, inexpensive and eco-friendly method. The developed platform was then tested with Geobacter sulfurreducens, as a proof of concept. G. sulfurreducens cells were detected at latent phase with an RGB ratio of 1.10 ± 0.04, and a response time of two hours.

Maçarico, A.a, Vieira Fantoni Louro Sêco Martins Hollenstein M. a A. a. "On the a-Si:H film growth: The role of the powder formation." Journal of Non-Crystalline Solids. 198-200 (1996): 1207-1211. AbstractWebsite

Results are presented which are geared towards an understanding of the influence of powder formation during film growth. Plasma chemistry is correlated with the morphology, structure (inferred through infrared spectroscopy, scanning electron microscopy and X-ray diffraction) electro-optical and density of states of intrinsic films deposited under continuous and power modulated operation. Results show that for modulation frequencies where no powder formation occurs and low substrate temperatures T (150°C), silane decomposition gives rise to the growth of inhomogeneous films while in the high modulation frequency regime, at the same temperature, the anions and powder are trapped resulting in films with high deposition rates and low defect density.

Willeke, G.a c, Martins R. b. "On the structural, optical and electronic properties of microcrystalline Si:O:C:H thin films prepared in a two-consecutive-decomposition-deposition-chamber system." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 63 (1991): 79-86. AbstractWebsite

P- and n-type weakly absorbing highly conductive (σ>0·1Ω-1 cm-1) SiC thin films with similar structural and optoelectronic properties have been prepared in a two-consecutive-decomposition-deposition-chamber reactor. These films are composed of Si microcrystals (δ = 50-100 Å) embedded in an amorphous Si:0:C:H matrix, with concentrations up to 25at.%O and 20at.%C. From diffraction studies there is no evidence for the presence of SiC crystallites. Electrical conduction appears to be in extended states via percolation channels through Si crystallites of sufficient volume fraction. © 1991 Taylor & Francis Ltd.

Rodrigues, J.a, Mata Pimentel Nunes Martins Fortunato Neves Monteiro Costa D. a A. b. "One-step synthesis of ZnO decorated CNT buckypaper composites and their optical and electrical properties." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 195 (2015): 38-44. AbstractWebsite

ZnO/CNT composites were prepared using ZnO nanoparticles and tetrapods synthesized by the Laser Assisted Flow Deposition method. The co-operative behaviour between these two materials may give rise to the production of advanced functional materials with a wide range of applications in electronics and optoelectronics. Despite some degree of aggregation in the case of the nanoparticles, scanning electron microscopy images evidence that the produced ZnO structures are well dispersed in the CNT buckypapers. Independent of the ZnO morphology the samples resistivity was shown to be of the order of ∼10-1 Ω cm while in the case of the electron mobility, the composite with tetrapods reveals a lower value than the ones obtained for the remaining samples. Well-structured ZnO luminescence was observed mainly in ultraviolet highlighting the high optical quality of the produced structures. The temperature dependence of the luminescence reveals a distinct trend for the composites with ZnO tetrapods and ZnO nanoparticles. © 2015 Elsevier B.V.

c Kiazadeh, A.a b, Salgueiro Branquinho Pinto Gomes Barquinha Martins Fortunato D. a R. a. "Operational stability of solution based zinc tin oxide/SiO2 thin film transistors under gate bias stress." APL Materials. 3 (2015). AbstractWebsite

In this study, we report solution-processed amorphous zinc tin oxide transistors exhibiting high operational stability under positive gate bias stress, translated by a recoverable threshold voltage shift of about 20% of total applied stress voltage. Under vacuum condition, the threshold voltage shift saturates showing that the gate-bias stress is limited by trap exhaustion or balance between trap filling and emptying mechanism. In ambient atmosphere, the threshold voltage shift no longer saturates, stability is degraded and the recovering process is impeded. We suggest that the trapping time during the stress and detrapping time in recovering are affected by oxygen adsorption/desorption processes. The time constants extracted from stretched exponential fitting curves are ∼106 s and 105 s in vacuum and air, respectively. © 2015 Author(s).

Prabakaran, R., Aguas Pereira Elangovan Fortunato Martins Ferreira H. L. E. "Optical and microstructural investigations of porous silicon coated with a-Si:H using PECVD technique." Materials Science Forum. 587-588 (2008): 308-312. AbstractWebsite

In the present work, the spectroscopic ellipsometry (1.5 - 5.5 eV) was used to investigate the effects of current density induced microstructural variations and their influence on the electronic states of as-prepared and a-Si:H coated porous silicon (PS). The pseudodielectric responses of the low and high current densities (5 and 40 mA/cm2) were analyzed using a multilayer model within the effective medium approximation. The FTIR investigation reveals me enhancement of surface oxide (Si-Ox) layer with current density and the improvement of the Si-Hx band after a-Si:H coating.