Publications

Export 575 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Á
Águas, H., Pereira Raniero Fortunato Martins L. L. E. "MIS photodiodes of polymorphous silicon deposited at higher growth rates by 27.12 MHz PECVD discharge." Materials Science Forum. 455-456 (2004): 73-76. AbstractWebsite

This work presents a comparative study between MIS photodiodes produced using high quality amorphous silicon (a-Si:H), deposited by PECVD at 2Å/s, using 13.56 MHz frequency and polymorphous silicon (pm-Si) deposited at 3Å/s using a 27.12 MHz frequency. The results show that the pm-Si:H outperforms the a-Si:H MIS photodiodes by having a rectification ratio of 107, and photosensitivity at AM1.5 conditions of 107, under 1V reverse bias. Apart from that, the pm-Si:H photodiode presents a higher open circuit voltage and better fill factor than a-Si:H MIS photodiode. These results prove that quality devices can be produced at high growth rates by using pm-Si:H. In this work the photodiode performances were correlated to the films properties, aiming to determine the characteristics responsible for the performances exhibited by the pm-Si:H devices.

Águas, H., Raniero Pereira Fortunato Martins L. L. E. "Effect of the discharge frequency and impedance on the structural properties of polymorphous silicon." Thin Solid Films. 451-452 (2004): 264-268. AbstractWebsite

This work presents a study performed on the deposition of pm-Si:H by plasma enhanced chemical vapor deposition using excitation frequencies of 13.56 and 27.12 MHz, where the interest of increasing the excitation frequency relies on higher plasma dissociation and reduced energy of ion bombardment, thus allowing the deposition of superior grade material at higher growth rates. The plasma impedance, which allows the monitoring of particle formation in the plasma, was correlated to the film properties, characterized by spectroscopic ellipsometry and hydrogen exodiffusion experiments. The set of data obtained show that by using the 27.12-MHz excitation frequency the hydrogen dilution and the r.f. power density needed to produce pm-Si:H can be reduced. Growth rates above 3.1 Å/s were obtained, the films being more dense and chemically more stable than those obtained with the standard 13.56 MHz. © 2003 Elsevier B.V. All rights reserved.

Águas, H., Fortunato Martins E. R. "Influence of a DC grid on silane r.f. plasma properties." Vacuum. 64 (2002): 387-392. AbstractWebsite

In this work we show that it is possible to control the plasma regime in the region close to the substrate in r.f. silane discharges. The PECVD reactor works in a modified triode configuration, where the control over the plasma regime is performed by polarising a grid electrode, placed close to the r.f. electrode, with a DC power source. Besides that, the DC grid allows also to control the energy of the ion bombardment, because the plasma potential will be a function of the voltage (Vpol) applied to the DC grid. The silane plasma was characterised with a Langmuir probe and an impedance probe. We were able to identify three plasma regimes in the region close to the substrate: γ′ regime for Vpol<0 V; γ′-α regime for 0 V<Vpol<40 V; and α regime for Vpol40 V. The γ′ regime is associated with a high concentration of dust particles in plasma and high electron energy (≈8eV), while the α regime is associated with a free dust plasma and low electron energy (≈2eV). The intermediate regime, γ′-α, is characterised by the presence of smaller particles (≈2-5nm) that can be beneficial for the film's properties. © 2002 Elsevier Science Ltd. All rights reserved.

A
Aguas, H.a, Pereira Ferreira Ramos Viana Andreu Vilarinho Fortunato Martins L. a I. a. "Effect of annealing on gold rectifying contacts in amorphous silicon." Materials Science Forum. 455-456 (2004): 96-99. AbstractWebsite

This work presents a study performed on several Au contacts deposited by evaporation on oxide free and oxidised (5-20Å of oxide) a-Si:H surfaces. The characterisation of the films was performed on as deposited, aged and annealed at 150°C structures. SIMS and RBS measurements show that the Au diffuses very easily on oxide free a-Si:H surfaces, even at room temperature, resulting in the formation of an oxide at the device surface that acquires a blue colour instead of the gold colour of the contacts. This was also visible in the SEM pictures of the cross section of the structures produced and on the changes of the surface morphology observed by AFM measurements. On the other hand, when the Au is deposited on oxidised a-Si:H surfaces, the results show that the oxide prevents the Au from diffusing and the nature of the contact is preserved. That is, better rectifying and stability performances are obtained in MIS like structures than in Schottky structures.

Aguas, H., Pereira Costa Raniero Fortunato Martins L. D. L. "Role of the oxide layer on the performances of a-Si:H schottky structures applied to PDS fabrication." Materials Research Society Symposium Proceedings. Vol. 910. 2007. 415-420. Abstract

In this work we present results of studies performed on Schottky and metal-insulator-semiconductor (MIS) position sensitive detectors (PSD) structures: substrate (glass)/ Cr (300 nm) / a-Si:H [n] (37 nm) / a-Si:H [i] (600 nm) / SiO2 (1.5 nm - for the MIS) / Au (7 nm). The effect of the interfacial oxide layer between Au and a-Si:H, for the MIS structures, was studied and compared with the Schottky, in order to determine how beneficial it could be for device performances and time degradation. For doing so, the Au thickness of 70Å was deposited by thermal evaporation on an oxide free (Schottky) and oxidized (≈20Å) (MIS) a-Si:H surfaces. These structures were characterized by SIMS, RBS, SEM and AFM in order to correlate the obtained diffusion profile of Au at the interface and the topography with the presence of the oxide at the interface. The results show that the Au inter-diffuses very easily in the oxide free a-Si:H surface, even at room temperature, degrading the devices performance. On the other hand, the MIS structures, with their interfacial oxide present no structural changes after annealing and the PSD produced are stable. We believe that this effect is associated with the barrier effect of the interfacial oxide that prevents the Au diffusion. The optimized 1D MIS sensors are stable and exhibit a linearity error as low as 0.8 % and sensitivities of 33 mV/cm for a 5 mW spot beam intensity at a wavelength of 532 nm, while the Schottky sensors showed a time degradation of their characteristics. © 2006 Materials Research Society.

Á
i Águas, H.a, Silva Fortunato Lebib Roca Cabarrocas Ferreira Guimarães Martins V. a E. a. "Large Area Deposition of Polymorphous Silicon by Plasma Enhanced Chemical Vapor Deposition at 27.12 MHz and 13.56 MHz." Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. 42 (2003): 4935-4942. AbstractWebsite

This work presents for the first time a study on the deposition of polymorphous silicon at an excitation frequency of 27.12 MHz in a large-area plasma enhanced chemical vapor deposition (PECVD) reactor. Moreover, the films produced at 13.56 MHz were also investigated to compare their performance with that of the films produced at 27.12 MHz. The SiH4/H2 plasma was characterized by impedance probe measurements, aiming to identify the plasma conditions that lead to produce polymorphous films, under quasi-isothermal conditions. The films were characterized by spectroscopic ellipsometry, infrared absorption, Raman spectroscopy, and hydrogen exodiffusion experiments. These techniques enable a detailed structural characterization of the polymorphous films and a study of the differences between the films deposited at 27.12 MHz and 13.56 MHz. Conductivity measurements were also performed to determine the transport properties of the films. The results show that by using a 27.12 MHz frequency, the growth rate increased by 70% and a more stable, relaxed and denser structure was obtained.

Águas, H.a, Pereira Ferreira Ramos Viana Andreu Vilarinho Fortunato Martins L. a I. a. "Effect of an interfacial oxide layer in the annealing behaviour of Au/a-Si:H MIS photodiodes." Journal of Non-Crystalline Solids. 338-340 (2004): 810-813. AbstractWebsite

This work presents a study on the effect of an interfacial silicon oxide layer placed between Au and a-Si:H MIS (metal-insulator-semiconductor) photodiodes in their performances, by stopping the Au diffusion towards the a-Si:H. The results show that the Au diffuses very easily to the oxide free a-Si:H surface, even at room temperature, degrading the photodiode performance. On the other hand, the MIS photodiodes with the interfacial oxide show an improvement of their characteristics after annealing, function of its thickness, and degree of film's compactness. This effect is associated with the presence of oxide of thicknesses ≥5 Å at the Au/a-Si:H interface that prevents the Au diffusion and improves the photodiode characteristics, which does not happen when the interfacial oxide is absent. © 2004 Elsevier B.V. All rights reserved.

Águas, H.M.B., Fortunato Cabrita Silva Tonello Martins E. M. C. A. "Correlation between surface/interface states and the performance of MIS structures." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A1211-A1216. Abstract

In order to understand the kinetics of formation of interface/surface states and its correlation on the final device performance, a preliminary study was performed on MIS structures, before and after surface oxidation/passivation, using different oxidation techniques and oxides: thermal (in air), chemical (in H2O2) and oxygen plasma. The devices used in this work are based on a glass/Cr/a-Si:H(n+)/a-Si:H(i)/SiOx/Pd structures, where the amorphous silicon intrinsic layer (i a-Si:H) with a photosensitivity of 107 was deposited by a modified plasma enhanced chemical vapour deposition (PECVD) triode system. The electrical properties of a-Si:H MIS structures were investigated by measuring their diode current-voltage characteristics in the dark and under illumination as well as the spectral response, as a function of the various oxidation techniques. Infrared spectroscopy and spectroscopic ellipsometry were used as a complementary tool to characterise the oxidised surface.

Águas, H., Perreira Silva Fortunato Martins L. R. J. C. "Effect of the tunnelling oxide growth by H2O2 oxidation on the performance of a-Si:H MIS photodiodes." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 109 (2004): 256-259. AbstractWebsite

In this work metal-insulator-semiconductor (MIS) photodiodes with a structure: Cr/a-Si:H(n+)/a-Si:H(i)/oxide/Au were studied, where the main objective was to determine the influence of the oxide layer on the performance of the devices. The results achieved show that their performance is a function of both oxide thickness and oxide density. The a-Si:H oxidation method used was the immersion in H2O2 solution. By knowledge of the oxide growth process it was possible to fabricate photodiodes exhibiting an open circuit voltage of 0.65V and short circuit current density under AM1.5 illumination of 11mA/cm2, with a response times less than 1μs for load resistance <400Ω, and a signal to noise ratio of 1×107. © 2003 Elsevier B.V. All rights reserved.

Águas, H., Martins Fortunato R. E. "Influence of the plasma regime on the structural, optical and transport properties of a-Si:H thin films." Key Engineering Materials. 230-232 (2002): 583-586. AbstractWebsite

In this work we show that it is possible to control the plasma species present near the substrate surface, from what is usually associated with an α regime (a plasma free of particles) to a γ' regime (a plasma where particles are present) and simultaneously control the energy of the ions striking the substrate during a-Si:H deposition from a silane glow discharge in a modified triode (MT) type PECVD reactor, where a DC mesh electrode biased with Vpol is located in front of the r.f electrode. The presence of large particles in the plasma leads to the deposition of the films with the poorest optoelectronic properties. When the particle size in the plasma decrease the film properties improve, but, when particles are no longer present in the plasma region close to the substrate, like in a α like regime, the properties of the films deteriorate again. The results show that the best transport properties are achieved for the films deposited in the α-γ' transition regime corresponding to 0V<Vpol<51V. Under this condition the films present a dark conductivity, σ d ≈ 10-11 (Ωcm)-1, photosensitivity, S ≈ 107, activation energy, ΔE ≈ 0.9 eV, hydrogen content, CH ≈ 10%, factor of microstructure, R ≈ 0.085 and an optical gap, Eop ≈ 1.77 eV.

Águas, H., Pereira Raniero Costa Fortunato Martins L. L. D. "Investigation of a-Si:H 1D MIS position sensitive detectors for application in 3D sensors." Journal of Non-Crystalline Solids. 352 (2006): 1787-1791. AbstractWebsite

This paper presents the results achieved in optimized 1D position sensitive detectors (PSD) using a metal-insulator-semiconductor (MIS) structure and different length to width ratios, in order to determine the optimal geometrical factor for the desired 3D integration. The results show that the optimized MIS PSD produced, exhibited linearity errors as low as 0.8% and sensitivities of 32 mV/cm, for a 5 mW spot beam intensity at a wavelength of 532 nm. The sensors can achieve a longitudinal spatial resolution of 1.25 μm (estimated by modulation transfer function calculation), while the transverse resolution depends on the minimum width used for each sensor. The calculated Jones parameter of the sensors is higher than 1011 J, with a fall-off parameter of 0.012 cm-1, indicating a high signal to noise detection ratio. © 2006 Elsevier B.V. All rights reserved.

i Águas, H.a, Roca Cabarrocas Lebib Silva Fortunato Martins P. b S. b. "Polymorphous silicon deposited in large area reactor at 13 and 27 MHz." Thin Solid Films. 427 (2003): 6-10. AbstractWebsite

Despite of a growing interest in this material, until now the studies on polymorphous silicon (pm-Si:H) have been performed on small laboratory reactors working at 13.56 MHz. Envisaging an industrial application of pm-Si:H, the technology was transferred to a large area plasma enhanced chemical vapour deposition reactor (25 × 40 cm2) working at excitation frequencies of 13.56 and 27.12 MHz. The plasma was characterized by impedance probe measurements and the films were characterized by spectroscopic ellipsometry, infrared spectroscopy and hydrogen evolution experiments, which are techniques that allow a rapid and reliable identification of pm-Si:H structure. Conductivity measurements were also performed to determine their transport properties. The results show that scaling up using the 13.56 MHz was successfully done and pm-Si:H films were deposited at a growth rate of ≈ 12 nm/min. Moreover, by using the 27.12 MHz excitation frequency the growth rate was even further increased to above 18 nm/min, as desired for industrial production. © 2002 Elsevier Science B.V. All rights reserved.

Águas, H., Pereira Raniero Fortunato Martins L. L. E. "Effect of the load resistance in the linearity and sensitivity of MIS position sensitive detectors." Materials Research Society Symposium Proceedings. Vol. 862. 2005. 691-696. Abstract

It is experimentally known that the linearity and sensitivity of the position sensitive detectors (PSD) are dependent on the resistance of the collecting layer and of the load resistance, mainly if the detection is based on the measurement of the photo-lateral voltage. To determine the value of the load resistance to be used in metal - insulator - semiconductor (MIS) PSDs structures that lead to the maximum value of sensitivity and linearity, we propose an electrical model through which it is able to simulate the proper sensor response and how the load resistance influence the results obtained. This model is valid for PSDs where the resistance of the collecting resistive layer is quite low (≤ 500 Ω), leading to a low output impedance. Under these conditions we conclude that the value of the load resistance should be of about 1 kΩ in order to achieve a good compromise between the linearity and the sensitivity of the PSD. This result is in agreement with the set of experiments performed. © 2005 Materials Research Society.

A
Albarran, T., Lopes Cabeça Martins Mourão L. J. R. "Preliminary budget methodology for reverse engineering applications using laser scanning." Proceedings of the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping: Virtual and Rapid Manufacturing Advanced Research Virtual and Rapid Prototyping. 2007. 231-235. Abstract

The driving force behind the work herein presented is the importance of budgeting in a competitive market. The problem at hands is the creation of a budgeting methodology for reverse engineering applications, involving laser scanning, that has the ability to generate budgets for different customer accuracy requirements and for parts of different morphologic characteristics, such as: shape, dimension and/or detail complexity. A breakup approach was used to implement the methodology: the reverse engineering process was broken in nine basic identified steps and elementary sources of cost were defined at the different reverse engineering stages as well. Particular budgeting methodologies for each step of the process were created. The obtained results so far point to the possibility of creating a complete budgeting system based on the proposed methodology. © 2008 Taylor & Francis Group.

Alendouro, M.S.J.G.a, Monteiro Figueiredo Martins Silva Ferro Fernandas R. C. C. a. "Microstructural characterization and properties of a glass and a glassceramic made from municipal incinerator bottom ash." Materials Science Forum. 455-456 (2004): 827-830. AbstractWebsite

A glass was made using bottom ash produced by a Portuguese municipal solid waste (MSW) incinerator. The bottom ash was the single batch material used in the formation of the glass, which was obtained through a conventional melt-quenching method. The glass was then converted to glass-ceramic for further recycling to construction materials. After submitting the glass samples to several heat treatments, between 820 and 1050°C and during different times, it was verified that the optimum heat treatment schedule for the ceramization of the glass was at 1000°C for 10h, as confirmed by microstructural observation and by X-ray diffraction. The major crystalline phases precipitated in the glass-ceramic were wollastonite (CaSiO3) and diopside (Ca(Mg,Al)(Si,Al)2O6). Microstructural analysis of the glass-ceramic revealed that the crystalline phases were present as dendrites and fiber-like structures that were homogeneously distributed in the material. The glassceramic showed good mechanical properties with a hardness of 5.6 MPa and a bending strength of 101 MPa. This material had a density of 2.8 gcm-3 and a thermal expansion coefficient of 9.10-6°C-1. The glass and the glass-ceramic showed an excellent chemical stability against leaching in acidic solution and in alkaline solution. In summary, both the glass and the glass-ceramic have good chemical and mechanical properties and can, therefore, be applied as construction materials.

Alexa, A.a, Tigau Alexandru Pimentel Branquinho Salgueiro Calmeiro Martins Fortunato Musat N. b P. a. "Morphological and optical characterization of transparent thin films obtained at low temperature using ZnO nanoparticles." Journal of Optoelectronics and Advanced Materials. 17 (2015): 1288-1295. AbstractWebsite

Transparent metal oxides thin films are a class of inorganic conductors and semiconductors with significant importance for use in portable electronics, displays, flexible electronics, multi-functional windows and solar cells. Due to the recent development of transparent and flexible electronics, there is a growing interest in depositing metal-oxide thin-film on plastic substrates that can offer flexibility, lighter weight, and potentially lead to cheaper manufacturing by allowing printing and rollto- roll processing. The plastic substrates, however, limit device processing to below 200oC. In this context, the deposition of high-performance semiconductor thin films from dispersions of pre-prepared oxide nanoparticles at temperatures below 200oC represents a potential key route. This paper reports on the preparation of ZnO transparent thin films using solutionprocessed nanoparticles (NPs) precipitated from zinc acetate alcoholic solution with potassium hydroxide. The nanoparticles size distribution, microstructure and crystallinity were measured by dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The thin films were deposited by spin-coating onto soda lima glass substrate, using a dispersion of 1wt% ZnO NPs. The morphology of the films annealed at 120 and 180oC, observed by atomic force microscopy and cross-section scanning electron microscopy, shows columnar grains with diameter ranging between 20 and 70 nm, depending on the conditions of depositions. Optical measurements indicated high transparency, between 85 and 94 %, in the visible range, a direct nature of band-to-band transitions and band gap values between 3,22 and 3,32 eV. The refractive index and extinction coefficient have been calculated from optical transmittance and reflectance spectra.

c Almeida, P.L.a, Godinho Cidade Nunes Marques Martins Fortunato Figueirinhas M. H. a M. "Composite systems for flexible display applications from cellulose derivatives." Synthetic Metals. 127 (2002): 111-114. AbstractWebsite

In this work, we study the electro-optical behaviour of cellulose/liquid crystal-based composite systems, in particular the influence of the flexible substrates and its conductive layers in the electro-optical behaviour of these kind of cells. Four cells were made using, respectively, two different substrates (a flexible polymer (poly(ethylene terephthalate) (PET)) and a soda lime glass) and two different conductive layers (indium tin oxide (ITO) and aluminium zinc oxide (AZO)). The conductive layer (AZO) was deposited in both, flexible and rigid substrates, for the same conditions, and the same substrates coated with ITO are commercially available. The cells were prepared from solid films of hydroxypropylcellulose (HPC) (30 μm thick) cross linked with 1,4-diisocyanatobutane (BDI) (7% w/w) and the nematic liquid crystal E7 (Merck, UK). The four different substrates were electrically and morphologically characterised. We have analysed all samples by light transmission and determined the maximum transmission, contrast and Von. We show a comparison of the results obtained for both flexible and rigid cells and discuss them in terms of the proposed working mechanism for these systems. © 2002 Elsevier Science B.V. All rights reserved.

Alves, E.a, Franco Barradas Munnik Monteiro Peres Wang Martins Fortunato N. a N. P. "Structural and optical properties of nitrogen doped ZnO films." Vacuum. 83 (2009): 1274-1278. AbstractWebsite

Zinc oxide is getting an enormous attention due to its potential applications in a variety of fields such as optoelectronics, spintronics and sensors. The renewed interest in this wide band gap oxide semiconductor relies on its direct high energy gap (Eg ∼ 3.437 eV at low temperatures) and large exciton binding energy. However to reach the stage of device production the difficulty to produce in a reproducible way p-type doping must be overcome. In this study we discuss the structural and optical properties of ZnO films doped with nitrogen, a potential p-type dopant. The films were deposited by magnetron sputtering using different conditions and substrates. The composition and structural properties of the films were studied combining X-ray diffraction (XRD), Rutherford backscattering (RBS), and heavy ion elastic recoil detection analysis (HI-ERDA). The results show an improvement of the quality of the films deposited on sapphire with increasing radio-frequency (RF) power with a preferentially growth along the c-axis. The ERDA analysis reveals the presence of H in the films and a homogeneous composition over the entire thickness. The photoluminescence of annealed samples evidences an improvement on the optical quality as identified by the well structured near band edge recombination. © 2009 Elsevier Ltd. All rights reserved.

deZeaBermudez Alves, R.D.a, Rodrigues Andrade Fernandes Pinto Pereira Pawlicka Martins Fortunato Silva L. C. a J. "GelatinnZn(CF3SO3)2 polymer electrolytes for electrochromic devices." Electroanalysis. 25 (2013): 1483-1490. AbstractWebsite

The present work is focused on gelatin-based electrolytes doped with a range of concentration of zinc triflate (Zn(CF3SO3)2). The transparent-thin-film samples have been represented by the notation GelatinnZn(CF3SO3)2, where n represents the zinc triflate salt concentration in the electrolyte membranes from 0.00 wt% to 10.93 wt% The samples have been characterized by conductivity measurements, thermal analysis, cyclic voltammetry, X-ray diffraction (XRD), polarized optical microscopy (POM) and scanning electron microscopy (SEM). The gelatin-based electrolytes were also tested as ionic conductors in electrochromic devices with the glass/ITO/WO3/gelatin-based electrolyte/CeO2-TiO2/ITO/glass configuration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Alves, R.D.a, Rodrigues Andrade Pawlicka Pereira Martins Fortunato Silva L. C. a J. "Study and characterization of a novel polymer electrolyte based on agar doped with magnesium triflate." Molecular Crystals and Liquid Crystals. 570 (2013): 1-11. AbstractWebsite

In the present work one host natural matrix - agar - has been doped with magnesium triflate (Mg(CF3SO3)2) with the goal of developing electrolytes for the fabrication of solid-state devices. The resulting samples have been represented by the notation Agar nMg(CF3SO3)2, where n represents the percentage of the magnesium triflate salt proportion in the electrolyte samples. The samples investigated, with n between 0.00% and 37.56%, have been obtained as transparent and thin films. The samples have been characterized by conductivity measurements, thermal analysis, cyclic voltammetry, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The agar-based electrolytes were also tested as ionic conductor in an electrochromic device with the following configuration: glass/indium tin oxide (ITO)/WO 3/agar-based electrolyte/CeO2-TiO2/ITO/glass. © 2013 Copyright Taylor and Francis Group, LLC.

b Amorín, H.a, Martins Kholkin Costa R. S. a A. "Structural and electrical characterization of ferroelectric SrBi 2Nb2O9 single crystals grown by high-temperature self-flux solution." Ferroelectrics. Vol. 320. 2005. 43-50. Abstract

High-quality SrBi2Nb2O9 (SBN) single crystals were grown from a melt using a high-temperature self-flux solution method and Bi2O3 added with B2O3 as a flux. A suitable thermal profile involving slow cooling rates allowed growing large and translucent SBN crystals exhibiting platelet morphology with typical size ∼5 × 5 mm2 and thickness approximately 400 μm. X-ray diffraction revealed a dominant (001)-orientation of the major face of the platelet crystals and edges oriented parallel to the [110] directions. The dielectric properties were evaluated along the ab-plane and in the c-axis direction. The ferro-paraelectric phase transition was observed at TC = 440°C with Curie-Weiss relationship above TC. The anisotropy of dielectric permittivity, i.e., the ratio between permittivity in the ab-plane and along c-axis was about 10 at TC-The obtained results are used to discuss the observed correlations between anisotropy, crystalline orientation, and electrical properties.

and Ao Liu, Guoxia Liu, Huihui Zhu Byoungchul Shin Elvira Fortunato Rodrigo Martins Fukai Shan. "Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage, high-performance transistors." Journal of Materials Chemistry C. 4 (2016): 4478-4484. AbstractWebsite

In this study, amorphous indium-tungsten oxide (IWO) semiconductor thin films were prepared by an eco-friendly spin-coating process using ethanol and water as solvents. The electrical properties of IWO thin-film transistors (TFTs), together with the structural and morphological characteristics of IWO thin films, were systematically investigated as functions of tungsten concentration and annealing temperature. The optimized IWO channel layer was then integrated on an aqueous aluminum oxide (AlOx) gate dielectric. It is observed that the solution-processed IWO/AlOx TFT presents high stability and improved characteristics, such as an on/off current ratio of 5 × 107, a field-effect mobility of 15.3 cm2 V-1 s-1, a small subthreshold slope of 68 mV dec-1, and a threshold voltage shift of 0.15 V under bias stress for 2 h. The IWO/AlOx TFT could be operated at a low voltage of 2 V, which was 15 times lower than that of conventional SiO2-based devices. The solution-processed IWO thin films synthesized in a green route would be promising candidates for large-area and high-performance low-cost devices. © The Royal Society of Chemistry 2016.

and Ao Liu, Guoxia Liu, Huihui Zhu Byoungchul Shin Elvira Fortunato Rodrigo Martins Fukai Shan. "High-mobility p-type NiOx thin-film transistors processed at low temperatures with Al2O3 high-k dielectric." Journal of Materials Chemistry C. 4 (2016): 9438-9444. AbstractWebsite

Although there are a few research studies on solution-processed p-channel oxide thin-film transistors (TFTs), the strict fabrication conditions and the poor electrical properties have limited their applications in low-power complementary metal oxide semiconductor (CMOS) electronics. Here, the application of the polyol reduction method for processing p-type CuxO and NiOx channel layers and their implementation in TFT devices are reported. The optimized CuxO and NiOx TFTs were achieved at low annealing temperatures (∼300 °C) and exhibited decent electrical properties. Encouraged by the inspiring results obtained on SiO2/Si substrates, the TFT performance was further optimized by device engineering, employing high-k AlOx as the gate dielectric. The fully solution-processed NiOx/AlOx TFT could be operated at a low voltage of 3.5 V and exhibits a high hole mobility of around 25 cm2 V-1 s-1. Our work demonstrates the ability to grow high-quality p-type oxide films and devices via the polyol reduction method over large area substrates while at the same time it provides guidelines for further p-type oxide material and device improvements. © The Royal Society of Chemistry 2016.

Araújo, A.a, Barros Mateus Gaspar Neves Vicente Filonovich Barquinha Fortunato Ferraria Botelho Do Rego Bicho Águas Martins R. a T. a. "Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells." Science and Technology of Advanced Materials. 14 (2013). AbstractWebsite

We report the effect of a disperse carbon interlayer between the n-a-Si:H layer and an aluminium zinc oxide (AZO) back contact on the performance of amorphous silicon solar cells. Carbon was incorporated to the AZO film as revealed by x-ray photoelectron spectroscopy and energy-dispersive x-ray analysis. Solar cells fabricated on glass substrates using AZO in the back contact performed better when a disperse carbon interlayer was present in their structure. They exhibited an initial efficiency of 11%, open-circuit voltage Voc = 1.6 V, short-circuit current JSC = 11 mA cm -2 and a filling factor of 63%, that is, a 10% increase in the J SC and 20% increase in the efficiency compared to a standard solar cell. © 2013 National Institute for Materials Science.

Araújo, A., Mendes Mateus Vicente Nunes Calmeiro Fortunato Águas Martins M. J. T. "Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealing." Journal of Physical Chemistry C. 120 (2016): 18235-18242. AbstractWebsite

Metal nanoparticles are of great interest for light trapping in photovoltaics. They are usually incorporated in the rear electrode of solar cells, providing strong light scattering at their surface plasmon resonances. In most cases, the nanoparticles are self-assembled by solid-state dewetting over a transparent conductive oxide (TCO) layer incorporated in the cell's rear electrode. Up to now, this process has been optimized mainly by tuning the thermal annealing parameters responsible for dewetting, or the thickness of the precursor metallic layer; but little attention has been paid to the influence of the underlying TCO layer properties on the morphology of the nanoparticles formed, which is the focus of the present article. This work investigates Ag nanoparticles structures produced on distinct surfaces by a simple, fast and highly reproducible method employing rapid thermal annealing. The results indicate that both the thermal conductivity and surface roughness of the TCO layer play a determinant role on the morphology of the nanostructures formed. This is of particular relevance, since we show in the study performed that the parasitic absorption of these Ag nanostructures is reduced, while the scattering is enhanced when the Ag nanostructures are formed on TCO layers with the highest conductivity and the lowest surface roughness (∼1 nm). These results unveil novel possibilities for the improvement of plasmonic nanostructures fabricated by thermal dewetting, via the careful adjustment of the physical properties of the underlying surface. © 2016 American Chemical Society.