Publications

Export 67 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
Z
Zhang, S.a b, Liao Raniero Fortunato Xu Kong Águas Ferreira Martins X. b L. a. "Silicon thin films prepared in the transition region and their use in solar cells." Solar Energy Materials and Solar Cells. 90 (2006): 3001-3008. AbstractWebsite

Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (σph), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100 mw/cm2) at room temperature. © 2006.

Zhang, S.a, Hu Raniero Liao Ferreira Fortunato Vilarinho Perreira Martins Z. a L. a. "The study of high temperature annealing of a-SiC:H films." Materials Science Forum. 514-516 (2006): 18-22. AbstractWebsite

A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 Å) gold film was evaporated on the half area of the a-SiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100°C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.

W
Willeke, G., Martins R. "Structural properties of weakly absorbing highly conductive SiC thin films prepared in a TCDDC system." Conference Record of the IEEE Photovoltaic Specialists Conference. Vol. 1. 1988. 320-323. Abstract

Diffraction and other structural measurements on n-type SiC thin films prepared in a TCDDC (two consecutive decomposition and deposition chamber) system indicate the presence of Si microcrystals (without evidence for SiC crystallites). Weakly absorbing, highly conductive layers (σ ≥ 10-1 (Ω-cm)-1) contain up to 20 at.% C and 25 at.% O. The optoelectronic properties of these films can be explained in terms of a sufficient volume fraction (above the percolation threshold) of Si microcrystals surrounded by an a-Si:C:O:H matrix.

V
Vicente, A.a, Águas Mateus Araújo Lyubchyk Siitonen Fortunato Martins H. a T. a. "Solar cells for self-sustainable intelligent packaging." Journal of Materials Chemistry A. 3 (2015): 13226-13236. AbstractWebsite

Nowadays there is a strong demand for intelligent packaging to provide comfort, welfare and security to owners, vendors and consumers by allowing them to know the contents and interact with the goods. This is of particular relevance for low cost, fully disposable and recyclable products, such as identification tags and medical diagnostic tests, and devices for analysis and/or quality control in food and pharmaceutical industries. However, the increase of complexity and processing capacity requires continuous power and can be addressed by the combined use of a small disposable battery, charged by a disposable solar cell, which is able to work under indoor lighting. Herein, we show a proof-of-concept of the pioneering production of thin-film amorphous silicon (a-Si:H) solar cells with an efficiency of 4% by plasma enhanced chemical vapour deposition (PECVD) on liquid packaging cardboard (LPC), which is commonly used in the food and beverage industries. Such accomplishment put us one step closer to this revolution by providing a flexible, renewable and extremely cheap autonomous energy packaging system. Moreover, such Si thin films take advantage of their good performance at low-light levels, which also makes them highly desirable for cheap mobile indoor applications. © The Royal Society of Chemistry.

S
Silva, A., Raniero Ferreira Águas Pereira Fortunato Martins L. E. H. "Silicon etching in CF4/O2 and SF6 atmospheres." Materials Science Forum. 455-456 (2004): 120-123. AbstractWebsite

The aim of this work is to present a process able to allow a fast method to clean plasma enhanced chemical vapour deposition (PECVD) systems used to produce amorphous silicon films and their alloys, and a proper device patterning when required. In this work we propose to study CF4/O2 or SF6 as etchant gases at room temperature to perform cleaning and films patterning. The aim is to select the process that leads to a faster cleaning process without formation of residual contaminants or to anisotropic patterning of very thin layers. The influence of some plasma parameters, such as pressure (p), power (P) and flow (f) for the etchant gases used will be also analysed.

Santos, L., Nunes Calmeiro Branquinho Salgueiro Barquinha Pereira Martins Fortunato D. T. R. "Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors." ACS Applied Materials and Interfaces. 7 (2015): 638-646. AbstractWebsite

Solution-processed field-effect transistors are strategic building blocks when considering low-cost sustainable flexible electronics. Nevertheless, some challenges (e.g., processing temperature, reliability, reproducibility in large areas, and cost effectiveness) are requirements that must be surpassed in order to achieve high-performance transistors. The present work reports electrolyte-gated transistors using as channel layer gallium-indium-zinc-oxide nanoparticles produced by solvothermal synthesis combined with a solid-state electrolyte based on aqueous dispersions of vinyl acetate stabilized with cellulose derivatives, acrylic acid ester in styrene and lithium perchlorate. The devices fabricated using this approach display a ION/IOFF up to 1 × 106, threshold voltage (VTh) of 0.3-1.9 V, and mobility up to 1 cm2/(V s), as a function of gallium-indium-zinc-oxide ink formulation and two different annealing temperatures. These results validates the usage of electrolyte-gated transistors as a viable and promising alternative for nanoparticle based semiconductor devices as the electrolyte improves the interface and promotes a more efficient step coverage of the channel layer, reducing the operating voltage when compared with conventional dielectrics gating. Moreover, it is shown that by controlling the applied gate potential, the operation mechanism of the electrolyte-gated transistors can be modified from electric double layer to electrochemical doping. © 2014 American Chemical Society.

Santos, L.a, Wojcik Pinto Elangovan Viegas Pereira Martins Fortunato P. a J. V. "Structure and morphologic influence of WO3 nanoparticles on the electrochromic performance of dual-phase a -WO3/WO3 inkjet printed films." Advanced Electronic Materials. 1 (2015). AbstractWebsite

The optimization of tungsten trioxide (WO3) nanoparticles produced via hydrothermal synthesis for application in electrochromic (EC) devices is reported. The structure and morphology of the nanoparticles are controlled by changing the acidity of the aqueous solvent added to the sol-gel precursor (peroxopolytungstic acid) during synthesis. Orthorhombic hydrated WO3 nanorods or monoclinic WO3 nanoslabs are obtained when HCl is added, while synthesis only in aqueous medium results in a mixture of both types of polymorphs. Dual-phase thin films are processed by inkjet printing deposition of the nanoparticles in flexible polyethylene terephthalate substrate with indium tin oxide coating (ITO PET) followed by the deposition of the precursor solution. When compared with purely amorphous tungsten oxide films, the dual phase ones present higher optical densities and improved capacity, and cyclability stability. The best results, obtained for orthorhombic hydrated nanoparticles (ortho -WO3 ·0.33H2 O), are due to its high surface area and improved conductivity. Additionally, the ex situ X-ray diffraction (XRD) lithiation studies show evidence of a higher distortion of the monoclinic when compared with the orthorhombic crystallographic structure, which contribute to the inferior EC performance. These results validate the use of inkjet printing deposition with low processing temperatures for EC dual-phase thin films containing optimized nanoparticles which are compatible with low-cost substrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

R
Raniero, L., Martins Canhola Pereira Ferreira Fortunato Martins N. P. S. "Spectral response of large area amorphous silicon solar cells." High Temperature Material Processes. 8 (2004): 293-299. AbstractWebsite

In this work we report the study of spectral response on large area amorphous silicon solar cells (30×40 cm2), deposited through plasma enhanced chemical vapour deposition technique (PECVD) at excitation frequencies of 27.12MHz. To perform this work, the solar cells were split in units of area of 0.126 cm2, which allows determining the device homogeneity over all the entire solar cell. Emphasis of this work is put the role of thickness and optical band gap of p-doped layer on the collection efficiency, spectral response, current density-voltage curves under standard condition and spectroscopy impedance. The results show that high transparent p-doped layer can be deposited at 42mW/cm2, which allows increasing the collection efficiency in 45%, at the blue region. The spectroscopy impedance performed showed to be efficient in analyzing the device shunt resistance, interfaces role on the device performances and the behaviour of the device depletion region, for the range of frequencies analysed.

Raniero, L., Fortunato Ferreira Martins E. I. R. "Study of nanostructured/amorphous silicon solar cell by impedance spectroscopy technique." Journal of Non-Crystalline Solids. 352 (2006): 1880-1883. AbstractWebsite

This work deals with the study of nanostructured/amorphous silicon solar cell deposited by plasma enhanced chemical vapor deposition at 27.12 MHz by impedance spectroscopy. The solar cell studied present fill factor of 0.67, open circuit voltage of 0.94 V and short-circuit current density of 14.48 mA/cm2, which leads to the efficiency of 9.12%. The impedance spectroscopy analysis was performed under dark and illumination conditions. The data obtained were used to define an electrical equivalent circuit model able to explain the role of the different solar cell components, including the interfaces, on the solar cell performance. © 2006 Elsevier B.V. All rights reserved.

Raniero, L., Ferreira Águas Zhang Fortunato Martins I. H. S. "Study of a-SiC:H buffer layer on nc-Si/a-Si:H solar cells deposited by PECVD technique." Conference Record of the IEEE Photovoltaic Specialists Conference. 2005. 1548-1551. Abstract

This work deals with the study of the role of the buffer layers thickness on the TCO/p-a-SiC:H/buffer1/buffer2/i(nc-Si/a-Si:H)/n-a- Si:H/Al solar cell I-V and impedance performances. The aim was to improve the p/i interface region, which has a large influence on the solar cell characteristics and stability. In order to match the difference between the p and i layers optical gaps, the buffer layers were deposited using, for each layer, different methane to silane mixtures, aiming to obtain a gradual match of the corresponding optical gaps. The intrinsic layer was deposited at high hydrogen dilution rates at 27.12 MHz in conditions that allowed the incorporation of nanoparticles/nanoclusters. Solar cells with fill factor of 0.63; open circuit voltage of 0.93 Volts; short circuit current density of 16.13 mA/cm2 and an efficiency of 9.4% were produced with buffer layers around 1.3 nm thick. When comparing these solar cells with conventional amorphous silicon solar cells we notice that the quantum efficiency from ultraviolet to green regions is improved up to 13%, in average. Concerning solar cell capacitance, the data show that the best solar cells exhibit the highest capacitance, meaning that the films are compact and dense, in-line with the other electrical characteristics obtained. ©2005 IEEE.

Raniero, L., Ferreira Pereira Águas Fortunato Martins I. L. H. "Study of nanostructured silicon by hydrogen evolution and its application in p-i-n solar cells." Journal of Non-Crystalline Solids. 352 (2006): 1945-1948. AbstractWebsite

Nanostructured silicon films were deposited on the amorphous to microcrystalline transition region by plasma enhanced chemical vapor deposition, using an rf frequency of 27.12 MHz. Micro-Raman spectroscopy data show that in the transition region the peaks typically associated with amorphous silicon are slightly shifted towards higher wavenumber and become narrow, which could be explained by the short range order improvement or by the incorporation of very small Si nanocrystallites. The hydrogen evolution spectra from samples deposited in this region show two peaks, one at low temperature (LT) and the other at high temperature (HT), around 698 K and 840 K, respectively. These peaks represent activation energies of 87 (LT) and 135 (HT) kJ/mol, respectively, as deduced from the so-called Kissinger's method. The solar cells fabricated using i-layers produced in this transition region show good performances, with current density = 14.96 mA/cm2, short circuit voltage = 0.95 V, and fill factor = 0.67, which leads to efficiencies of 9.52%. © 2006 Elsevier B.V. All rights reserved.

P
Pereira, L.a, Barquinha Gonçalves Vilà Olziersky Morante Fortunato Martins P. a G. a. "Sputtered multicomponent amorphous dielectrics for transparent electronics." Physica Status Solidi (A) Applications and Materials Science. 206 (2009): 2149-2154. AbstractWebsite

In this work, we present the structural and electrical properties of HfO 2, HfO 2 +SiO 2, and HfO 2 +Al 2O 3 dielectric composite layers deposited by sputtering without any intentional substrate heating. The films were deposited on glass and 〈100〉 crystalline silicon (c-Si) substrates from ceramic targets by using argon (Ar) and oxygen (O 2) as sputtering and reactive gases, respectively. The incorporation of SiO 2 and Al 2O 3 into hafnia was obtained by co-sputtering and itwas controlled by adjusting the ratio of r.f. power applied between the targets. The HfO 2 films present a microcrystalline structure, when deposited at room temperature (RT). The lowest leakage current in c-Si MIS (Metal-Insulator- Semiconductor) structures (below 10 9A/cm 2 at 10V on films with a thickness around 180 nm) was obtained for an Ar/O 2 ratio of 14:1 sccm, and further increase in O 2 flow does not enhance the electrical characteristics. The codeposition of SiO 2 or Al 2O 3 with hafnia has a strong influence on the structure of the resulting films since they become amorphous. The leakage current in MISstructures incorporating these multi-component dielectrics is reduced at least by a factor of 2, which is accompanied by an increase on the band gap. The dielectric constant is decreased due to the lower values for SiO 2 and Al 2O 3. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Pereira, L., Águas Igreja Martins Nedev Raniero Fortunato Martins H. R. R. "Sputtering preparation of silicon nitride thin films for gate dielectric applications." Materials Science Forum. 455-456 (2004): 69-72. AbstractWebsite

Silicon nitride films were produced on glass and crystalline silicon substrates using r.f. magnetron sputtering to select the best process conditions (substrate temperature, gas pressure and r.f. power) to grow dielectrics for device applications such as low temperature thin film transistors, where special care has to be taken concerning the film's compactness and bulk defects. The films produced were analysed by different techniques such as ultra violet - visible - near infrared spectroscopy Fourier transformed infrared spectroscopy and capacitance measurements, aiming to correlate the films properties with its composition and degree of compactness. The role of the deposition pressure is notorious since films deposited at high pressures are more compact, presenting low oxygen incorporation after deposition. The increase of the substrate temperature up to 373 °K has the same effect, not changing the film's amorphous structure. These data will be discussed aiming to produce films with the required compactness and stoichiometry to grow very thin insulating layers (<10 nm) to be used in MIS structures or devices like thin film transistors.

Pereira, L.a, Águas Beckers Martins Fortunato Martins H. a M. b. "Spectroscopic ellipsometry study of nickel induced crystallization of a-Si." Journal of Non-Crystalline Solids. 352 (2006): 1204-1208. AbstractWebsite

The aim of this work is to present a spectroscopic ellipsometry study focused on the annealing time effect on nickel metal induced crystallization of amorphous silicon thin films. For this purpose silicon layers with 80 and 125 nm were used on the top of which a 0.5 nm Ni thick layer was deposited. The ellipsometry simulation using a Bruggemann Effective Medium Approximation shows that films with 80 nm reach a crystalline fraction of 72% after 1 h annealing, appearing to be full crystallized after 2 h. No significant structural improvement is detected for longer annealing times. On the 125 nm samples the crystalline volume fraction after 1 h is only around 7%, requiring 5 h to get a similar crystalline fraction than the one achieved with the thinner film. This means that the time required for full crystallization will be strongly determined by the Si layer thickness. Using a new fitting approach the Ni content within the films was also determined by SE and related to the silicon film thickness. © 2006 Elsevier B.V. All rights reserved.

Parthiban, S.a, Ramamurthi Elangovan Martins Fortunato K. a E. b. "Spray deposited molybdenum doped indium oxide thin films with high near infrared transparency and carrier mobility." Applied Physics Letters. 94 (2009). AbstractWebsite

Molybdenum doped (0-1 at. %) indium oxide thin films with high near infrared (NIR) transparency and carrier mobility were deposited on Corning-1737 glass substrates at 400 °C by spray pyrolysis experimental technique. Films with mobility as high as ∼149 cm2 /V s were obtained when annealed in vacuum at 550 °C, which also possess carrier concentration of ∼1× 1020 cm-3 and resistivity as low as ∼4.0× 10-4 cm. Further, both the average visible transmittance (500-800 nm) and the average NIR transmittance are >83%. This clearly shows that the transmittance is extended well into the NIR region. © 2009 American Institute of Physics.

Parthiban, S.a, Elangovan Ramamurthi Goncalves Martins Fortunato E. b K. a. "Structural, optical and electrical properties of indium-molybdenum oxide thin films prepared by spray pyrolysis." Physica Status Solidi (A) Applications and Materials Science. 207 (2010): 1554-1557. AbstractWebsite

Molybdenum doped indium oxide (IO) thin films were deposited on the Coring F1737 glass substrates at 400 °C by spray pyrolysis technique. TheModoping was varied between 0 and 4 at.%. The films were characterized by their structural, electrical and optical properties. The films are confirmed to be cubic bixbyite In 2O 3 with a strongest orientation along (222) for 0.5 at.% Mo, which is shifted to (400) plane when the Mo doping is increased to ≥1.2 at.%. The films deposited with 0.5 at.% Mo showed high mobility of ̃90 cm 2/Vs, resistivity of ̃6.8×10 -4ωcm and carrier concentration of ̃1.01× 1020 cm -3 with >̃73% transmittance in the visible range between 500 and 800 nm. The transmittance is well extended into near infrared region.

N
Nunes, P., Braz Fernandes Silva Fortunato Martins F. M. R. J. "Structural characterisation of zinc oxide thin films produced by spray pyrolysis." Key Engineering Materials. 230-232 (2002): 599-602. AbstractWebsite

In this work, we present a study of the effect of temperature, type and concentration of the dopant on the structural characteristics of ZnO thin films produced by spray pyrolysis; the crystallite size has been determined from profile peak shape analysis. These results are compared to the electrical characterisation performed on these materials. The effect of the dopant on the properties of ZnO thin films depends on its characteristics, mainly its ionic radius. Al, Ga and In have been studied as dopants, the best one being In, since it leads to the lowest resistivity.

b Neves, N.a b, Barros Antunes Ferreira Calado Fortunato Martins R. a E. a. "Sintering behavior of nano- and micro-sized ZnO powder targets for rf magnetron sputtering applications." Journal of the American Ceramic Society. 95 (2012): 204-210. AbstractWebsite

In this work, the nonisothermal sintering behavior of as-received commercial high purity ZnO micrometric (m-ZnO), submicrometric (sm-ZnO) and nanometric (n-ZnO) powders was studied. The sintering behavior for sputtering target production was evaluated by changing the green density of samples from 62% of theoretical density (TD) to 35%. We observed that for n-ZnO powder, the maximum shrinkage rate (MSR) temperature (T MSR) was not affected by the green density, and that it was reached at lower temperatures (∼710°C) compared with m-ZnO and sm-ZnO powders. For these powders, the temperature of MSR increased from 803°C to 934°C and from 719°C to 803°C as TD changed from 62% to 35% TD, respectively. Small grain size (∼0.560 μm) and high density targets were obtained for n-ZnO when sintered at temperatures below the T MSR. Heating rate from 1°C to 15°C/min led to lower activation energy for n-ZnO (∼201 ± 3 kJ/mol) than for the submicrometric (sm-ZnO) (∼332 ± 20 kJ/mol) and micrometric (m-ZnO) (∼273 ± 9 kJ/mol) powders. Using the model proposed by Bannister and Woolfrey, an n value of 0.75 was found, which was correlated with a combination of viscous flow and volume diffusion mechanisms that should control the initial stage of n-ZnO sintering. No significant differences were observed for n-ZnO powder in terms of density when the size of targets (scale-up effect) was increased, while in the case of m-ZnO and sm-ZnO, a delay in the densification was observed, which was related to the higher sinterability of n-ZnO powder. Two inches ZnO ceramic targets with different particle sizes and final densities were used in an rf magnetron sputtering system to produce ZnO films under the same deposition conditions. Films with thickness around 100 nm and good uniformity were produced using those targets, and no variation was observed in the optical and morphological properties. However, low electrical resistivity (1.4 Omega;·cm) films were obtained with n-ZnO targets, which could be explained in terms of a nonstoichiometric Zn:O composition of the started powders. © 2011 The American Ceramic Society.

M
Meng, L., Macarico Martins A. R. "Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering." Materials Research Society Symposium - Proceedings. Vol. 388. 1995. 379-384. Abstract

Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as-deposited film is about 1.3×10-1 Ω* cm and decreases down to 6.9×10-3 Ω* cm as the annealing temperature is increased up to 500°C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping.

Meng, L.-j., Maçarico Martins A. R. "Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering." Vacuum. 46 (1995): 673-680. AbstractWebsite

Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as deposited film is about 1.3 × 10-1 gW*cm and decreases down to 6.9 × 10-3 Ω*cm as the annealing temperature is increased up to 500 °C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping. © 1995.

Mei, S., Yang Monteiro Martins Ferreira J. R. R. "Synthesis, characterization, and processing of cordierite-glass particles modified by coating with an alumina precursor." Journal of the American Ceramic Society. 85 (2002): 155-160. AbstractWebsite

The surfaces of cordierite and glass particles were modified by coating them with an alumina precursor using a precipitation process in the presence of urea. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy, X-ray diffraction, electrophoresis, and rheological measurements were used to characterize the coated powders. SEM and transmission electron microscopy morphologies of the coated powders revealed that amorphous and homogeneous coatings have been formed around the particles. The morphology of the coated powders showed a coiled wormlike surface. The coating Al2O3 layer dominated the surface properties of the coated glass and cordierite powders. The influence of the coating layer on the processing ability of cordierite-based glass-ceramics substrates by tape casting was studied in aqueous media. It could be concluded that the coating of the powders facilitates the processing and yields green and sintered tapes with denser, more homogeneous microstructures compared with the uncoated powders.

Martins, R., Águas Silva Ferreira Cabrita Fortunato H. V. I. "Silicon nanostructure thin film materials." Vacuum. 64 (2002): 219-226. AbstractWebsite

This paper deals with the growth process of nanostructured silicon films produced by chemical vapour deposition technique, at or close to the γ-regime where powders are formed. There, besides the set of chemical reactions undertaken by the species decomposed on the growth surface, the importance of the physics of the plasma in managing the powders and on the final film performances will be shown. To identify the plasma region where Si nanoaggregates are formed, we propose the use of a new parameter that translates the energy coupling of the rf power to the species of the gas flow, per pressure range of the process. By doing so we could establish an excellent correlation between this ratio and the plasma parameters such as peak to peak rf voltage and plasma impedance, or with the films defect density and their transport properties. Apart from that, we also show that high compact Si nanoclusters could be grown under moderate ion bombardment. Finally, to allow the growth at high rates of controlled silicon nanostructures, a three cycling process based on hot wire chemical vapour deposition and plasma assisting the hot wire technique will be discussed. © 2002 Elsevier Science Ltd. All rights reserved.

Martins, R., Vieira Ferreira Fortunato M. I. E. "Structure and composition of doped silicon oxycarbide microcrystalline layers produced by spatial separation techniques." Materials Research Society Symposium - Proceedings. Vol. 358. 1995. 787-792. Abstract

This work presents experimental data concerning the role of the oxygen partial pressure used during the preparation process, on the structure, composition and optoelectronic properties of wide band gap doped microcrystalline silicon oxycarbide films produced by a TCDDC system [1].

Martins, R., Maçarico Vieira Ferreira Fortunato A. M. I. "Structure, composition and electro-optical properties of n-type amorphous and microcrystalline silicon thin films." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 76 (1997): 249-258. AbstractWebsite

This paper deals with the structure, composition and electro-optical characteristics of n-type amorphous and microcrystalline silicon thin films produced by plasma-enhanced chemical vapour deposition in a hydrogenhelium mixture. In addition, special emphasis is given to the role that hydrogen incorporation plays in the film's properties and in the characteristics of n-type microcrystalline films presenting simultaneously optical gaps of about 2·3 eV (controlled by the hydrogen content in the film), a dark conductivity of 6-5S cm-1 and a Hall mobility of about 0·86 cm2 V-1 s-1, the highest combined values for n-type microcrystalline silicon films, as far as we know.

Martins, R., Barquinha Pereira Correia Gonçalves Ferreira Fortunato P. L. N. "Selective floating gate non-volatile paper memory transistor." Physica Status Solidi - Rapid Research Letters. 3 (2009): 308-310. AbstractWebsite

Here we report the performance of a selective floating gate (V GS) n-type non-volatile memory paper field-effect transistor. The paper dielectric exhibits a spontaneous polarization of about 1 mCm-2 and GIZO and IZO amorphous oxides are used respectively as the channel and the gate layers. The drain and source regions are based in continuous conductive thin films that promote the integration of fibres coated with the active semiconductor. The floating memory transistor writes, reads and erases the stored information with retention times above 14500 h, and is selective (for VGS > 5 ± 0.1 V). That is, to erase stored information a symmetric pulse to the one used to write must be utilized, allowing to store in the same space different information. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.