Publications

Export 59 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H [I] J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Á
Águas, H., Pereira Raniero Costa Fortunato Martins L. L. D. "Investigation of a-Si:H 1D MIS position sensitive detectors for application in 3D sensors." Journal of Non-Crystalline Solids. 352 (2006): 1787-1791. AbstractWebsite

This paper presents the results achieved in optimized 1D position sensitive detectors (PSD) using a metal-insulator-semiconductor (MIS) structure and different length to width ratios, in order to determine the optimal geometrical factor for the desired 3D integration. The results show that the optimized MIS PSD produced, exhibited linearity errors as low as 0.8% and sensitivities of 32 mV/cm, for a 5 mW spot beam intensity at a wavelength of 532 nm. The sensors can achieve a longitudinal spatial resolution of 1.25 μm (estimated by modulation transfer function calculation), while the transverse resolution depends on the minimum width used for each sensor. The calculated Jones parameter of the sensors is higher than 1011 J, with a fall-off parameter of 0.012 cm-1, indicating a high signal to noise detection ratio. © 2006 Elsevier B.V. All rights reserved.

Águas, H., Martins Fortunato R. E. "Influence of the plasma regime on the structural, optical and transport properties of a-Si:H thin films." Key Engineering Materials. 230-232 (2002): 583-586. AbstractWebsite

In this work we show that it is possible to control the plasma species present near the substrate surface, from what is usually associated with an α regime (a plasma free of particles) to a γ' regime (a plasma where particles are present) and simultaneously control the energy of the ions striking the substrate during a-Si:H deposition from a silane glow discharge in a modified triode (MT) type PECVD reactor, where a DC mesh electrode biased with Vpol is located in front of the r.f electrode. The presence of large particles in the plasma leads to the deposition of the films with the poorest optoelectronic properties. When the particle size in the plasma decrease the film properties improve, but, when particles are no longer present in the plasma region close to the substrate, like in a α like regime, the properties of the films deteriorate again. The results show that the best transport properties are achieved for the films deposited in the α-γ' transition regime corresponding to 0V<Vpol<51V. Under this condition the films present a dark conductivity, σ d ≈ 10-11 (Ωcm)-1, photosensitivity, S ≈ 107, activation energy, ΔE ≈ 0.9 eV, hydrogen content, CH ≈ 10%, factor of microstructure, R ≈ 0.085 and an optical gap, Eop ≈ 1.77 eV.

Águas, H., Martins Nunes Maneira Fortunato R. Y. M. "Influence of the plasma regime on the structural, optical, electrical and morphological properties of a-Si:H thin films." Materials Science Forum. 382 (2001): 11-20. AbstractWebsite

{In this work we report how it is possible to control the plasma regime near the substrate surface, from predominantly α to predominantly γ', passing trough and intermediate α-γ' regime, and simultaneously control the energy of the ions striking the substrate during a-Si:H deposition from a silane glow discharge in a modified triode type PECVD reactor. To do so, we apply a DC voltage (Vpol to a set of grids placed in front of the r.f. electrode and by doing this, we control the energy of the ions striking the substrate during the film's growth and the plasma regime near the substrate. Under a plasma of the γ' regime, the surface roughness is high and the films are poorly compact. In the α-γ' regime, the ion bombardment is moderate and the films are highly smooth and compact. In the α regime the ion bombardment is higher and so the films can become more compact but the surface roughness increases and the electrical properties deteriorate. The results achieved show that the best transport properties are achieved for the films deposited in the α-γ' regime corresponding to a Vpol of 38 V. Under this condition the films presented a dark conductivity, σd = 6.2×10-12 (Ωcm)-1, activation energy, ΔE ≈ 0.9 eV, hydrogen content

Águas, H., Fortunato Martins E. R. "Influence of a DC grid on silane r.f. plasma properties." Vacuum. 64 (2002): 387-392. AbstractWebsite

In this work we show that it is possible to control the plasma regime in the region close to the substrate in r.f. silane discharges. The PECVD reactor works in a modified triode configuration, where the control over the plasma regime is performed by polarising a grid electrode, placed close to the r.f. electrode, with a DC power source. Besides that, the DC grid allows also to control the energy of the ion bombardment, because the plasma potential will be a function of the voltage (Vpol) applied to the DC grid. The silane plasma was characterised with a Langmuir probe and an impedance probe. We were able to identify three plasma regimes in the region close to the substrate: γ′ regime for Vpol<0 V; γ′-α regime for 0 V<Vpol<40 V; and α regime for Vpol40 V. The γ′ regime is associated with a high concentration of dust particles in plasma and high electron energy (≈8eV), while the α regime is associated with a free dust plasma and low electron energy (≈2eV). The intermediate regime, γ′-α, is characterised by the presence of smaller particles (≈2-5nm) that can be beneficial for the film's properties. © 2002 Elsevier Science Ltd. All rights reserved.

A
Araújo, A., Mendes Mateus Vicente Nunes Calmeiro Fortunato Águas Martins M. J. T. "Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealing." Journal of Physical Chemistry C. 120 (2016): 18235-18242. AbstractWebsite

Metal nanoparticles are of great interest for light trapping in photovoltaics. They are usually incorporated in the rear electrode of solar cells, providing strong light scattering at their surface plasmon resonances. In most cases, the nanoparticles are self-assembled by solid-state dewetting over a transparent conductive oxide (TCO) layer incorporated in the cell's rear electrode. Up to now, this process has been optimized mainly by tuning the thermal annealing parameters responsible for dewetting, or the thickness of the precursor metallic layer; but little attention has been paid to the influence of the underlying TCO layer properties on the morphology of the nanoparticles formed, which is the focus of the present article. This work investigates Ag nanoparticles structures produced on distinct surfaces by a simple, fast and highly reproducible method employing rapid thermal annealing. The results indicate that both the thermal conductivity and surface roughness of the TCO layer play a determinant role on the morphology of the nanostructures formed. This is of particular relevance, since we show in the study performed that the parasitic absorption of these Ag nanostructures is reduced, while the scattering is enhanced when the Ag nanostructures are formed on TCO layers with the highest conductivity and the lowest surface roughness (∼1 nm). These results unveil novel possibilities for the improvement of plasmonic nanostructures fabricated by thermal dewetting, via the careful adjustment of the physical properties of the underlying surface. © 2016 American Chemical Society.

Assunção, V.a, Fortunato Marques Águas Ferreira Costa Martins E. a A. a. "Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature." Thin Solid Films. 427 (2003): 401-405. AbstractWebsite

Highly conducting and transparent gallium doped zinc oxide thin films have been deposited at high growth rates by r.f. magnetron sputtering at room temperature on inexpensive soda lime glass substrates. The argon sputtering pressure was varied between 0.15 and 2.1 Pa. The lowest resistivity was 2.6 × 10-4 Ω cm (sheet resistance ≈6 Ω/sq. for a thickness ≈600 nm) and was obtained at an argon sputtering pressure of 0.15 Pa and a r.f. power of 175 W. The films present an overall transmittance in the visible spectra of approximately 90%. The increase on the resistivity for higher sputtering pressures is due to a decrease of both, mobility and carrier concentration, and is associated to a change on the surface morphology. The low resistivity, accomplished with a high growth rate (290 Å/min) and with a room temperature deposition enables these films deposition onto polymeric substrates for flexible optoelectronic devices. © 2002 Elsevier Science B.V. All rights reserved.

B
Bahubalindruni, P.G.a, Kiazadeh Sacchetti Martins Rovisco Tavares Martins Fortunato Barquinha A. b A. b. "Influence of Channel Length Scaling on InGaZnO TFTs Characteristics: Unity Current-Gain Cutoff Frequency, Intrinsic Voltage-Gain, and On-Resistance." Journal of Display Technology. 12 (2016): 515-518. AbstractWebsite

This paper presents a study concerning the role of channel length scaling on IGZO TFT technology benchmark parameters, which are fabricated at temperatures not exceeding 180\, ^{\circ}C. The parameters under investigation are unity current-gain cutoff frequency, intrinsic voltage-gain, and on-resistance of the bottom-gate IGZO TFTs. As the channel length varies from 160 to 3 μm, the measured cutoff frequency increases from 163 {\rm kHz} to 111.5 {\rm MHz}, which is a superior value compared to the other competing low-temperature thin-film technologies, such as organic TFTs. On the other hand, for the same transistor dimensions, the measured intrinsic voltage-gain is changing from 165 to 5.3 and the on-resistance is decreasing from 1135.6 to 26.1 kØmega. TFTs with smaller channel length (3 μ m) have shown a highly negative turn-on voltage and hump in the subthreshold region, which can be attributed to short channel effects. The results obtained here, together with their interpretation based on device physics, provide crucial information for accurate IC design, enabling an adequate selection of device dimensions to maximize the performance of different circuit building blocks assuring the multifunctionality demanded by system-on-panel concepts. © 2005-2012 IEEE.

Bahubalindruni, P.G.a, Tavares Borme De Oliveira Martins Fortunato Barquinha V. G. b J. "InGaZnO thin-film-transistor-based four-quadrant high-gain analog multiplier on glass." IEEE Electron Device Letters. 37 (2016): 419-421. AbstractWebsite

This letter presents a novel high-gain four-quadrant analog multiplier using only n-type enhancement indium- gallium-zinc-oxide thin-film-transistors. The proposed circuit improves the gain by using an active load with positive feedback. A Gilbert cell with a diode-connected load is also presented for comparison purposes. Both circuits were fabricated on glass at low temperature (200 °C) and were successfully characterized at room temperature under normal ambient conditions, with a power supply of 15 V and 4-pF capacitive load. The novel circuit has shown a gain improvement of 7.2 dB over the Gilbert cell with the diode-connected load. Static linearity response, total harmonic distortion, frequency response, and power consumption are reported. This circuit is an important signal processing building block in large-area sensing and readout systems, specially if data communication is involved. © 2016 IEEE.

Baía, I., Fernandes Nunes Quintela Martins B. P. M. "Influence of the process parameters on structural and electrical properties of r.f. magnetron sputtering ITO films." Thin Solid Films. 383 (2001): 244-247. AbstractWebsite

This paper presents results of the role of the oxygen concentration (CO) and the deposition pressure (pd) on structural and electrical properties of indium tin oxide films produced by r.f. magnetron sputtering. The films were annealed in air, followed by a reannealed stage in hydrogen, aiming to improve the film's transparency and conductivity. The results achieved show that the films texture grain size, structure and compactness is more influenced by CO than by pd, the same does not happen with the electrical properties.

Barquinha, P., Pereira Águas Fortunato Martins L. H. E. "Influence of the deposition conditions on the properties of titanium oxide produced by r.f. magnetron sputtering." Materials Science in Semiconductor Processing. 7 (2004): 243-247. AbstractWebsite

This work refers to the electro-optical and structural characteristics of titanium oxide (TiOx) thin films produced by radio frequency (r.f.) magnetron sputtering that present promising performances for gate dielectric applications, alone or in mixed tandem structures, such as with Al yOz films, taking advantage of its high dielectric constant. Films produced with a O2/Ar ratio between 0.1 and 0.15 present an improved stochiometry and density where the resistivity overcomes 1011 Ω cm and the fixed charge density decreases below 10 12 cm-2. The deposition pressure influences greatly the growth rate that seems to be a determinant factor dictating the films properties. © 2004 Elsevier Ltd. All rights reserved.

Barquinha, P., Fortunato Gonçalves Pimentel Marques Pereira Martins E. A. A. "Influence of time, light and temperature on the electrical properties of zinc oxide TFTs." Superlattices and Microstructures. 39 (2006): 319-327. AbstractWebsite

In this work we present a study concerning the influence of some of the most important external factors on the electrical properties of transparent thin-film transistors (TFTs), using zinc oxide produced at room temperature as the semiconductor material. Electrical characterization performed sixteen months after the production of the devices showed a decrease in the on/off ratio from 8×105 to 1×105, mainly due to the increase of the off-current. We also observed a small increase in the saturation mobility, a decrease in the threshold voltage and an increase in the gate voltage swing (by factors of about 1.2, 0.9 and 1.6, respectively). Exposure to ambient light does not have a noticeable effect on the electrical properties, which is an important point as regards the application of these devices in active matrix displays. Some variation of the electrical properties was only detectable under intense white light radiation. In order to evaluate the temperature effect on the TFTs, they were also characterized at 90 °C. At this temperature we noticed that the off-current increased more than two times, and the other electrical properties had a small variation, returning to their initial values after cooling, meaning that the process is totally reversible. © 2005 Elsevier Ltd. All rights reserved.

Barquinha, P., Pimentel Marques Pereira Martins Fortunato A. A. L. "Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide." Journal of Non-Crystalline Solids. 352 (2006): 1749-1752. AbstractWebsite

Multicomponent amorphous oxides are starting to emerge as a class of appealing semiconductor materials for application in transparent electronics. In this work, a high performance bottom-gate n-type transparent thin-film transistors are reported, being the discussion primarily focused on the influence of the indium zinc oxide active layer thickness on the properties of the devices. For this purpose, transparent transistors with active layer thicknesses ranging from 15 nm to 60 nm were produced at room temperature using rf magnetron sputtering. Optical transmittance data in the visible range reveals average transmittance higher than 80%, including the glass substrate. The devices work in the enhancement mode and exhibit excellent saturation drain currents. On-off ratios above 107 are achieved, but this value tends to be lower for devices with thicker semiconductor films, as a result of the decrease in the resistance of the channel region with increasing thickness. Channel mobilities are also quite respectable, with some devices presenting values around 40 cm2/V s, even without any annealing or other post-deposition improvement processes. Concerning the evolution of threshold voltage with the thickness, this work shows that it increases from about 3 V in thicker films up to about 10 V in the thinnest ones. The interesting electrical properties obtained and the versatility arising from the fact that it is possible to modify them changing only the thickness of the semiconductor makes this new transparent transistors quite promising for future transparent ICs. © 2006 Elsevier B.V. All rights reserved.

b Bernacka-Wojcik, I.a b, Wojcik Aguas Fortunato Martins P. J. a H. "Inkjet printed highly porous TiO2 films for improved electrical properties of photoanode." Journal of Colloid and Interface Science. 465 (2016): 208-214. AbstractWebsite

The aim of presented work is to show the improvements obtained in the properties of TiO2 films for dye sensitized solar cells fabricated by inkjet printing using an innovative methodology. We describe the development and properties of TiO2-based inks used in a lab-scale printer, testing various commercial TiO2 pastes. The porosity of the deposited inkjet printed TiO2 films is much higher than using the conventional "doctor blade" deposition technique, as the ink solvent evaporates during the droplet fly from the nozzle to the substrate due to its picoliter volume and the applied heating of a printing stage (70°C). Thanks to higher surface area, the dye sensitized solar cells incorporating inkjet printed TiO2 film gave higher efficiencies (ηmax≈3.06%) than the more compact films obtained by the "doctor blade" method (ηmax≈2.56%). Furthermore, electrochemical analysis indicates that for whole tested thickness range, the inkjet printed layers have higher effective electron diffusion length indicating their better transport properties. © 2015 Elsevier Inc..

b d Bernacka-Wojcik, I.a, Senadeera Wojcik Silva Doria Baptista Aguas Fortunato Martins R. a P. J. "Inkjet printed and "doctor blade" TiO2 photodetectors for DNA biosensors." Biosensors and Bioelectronics. 25 (2010): 1229-1234. AbstractWebsite

A dye sensitized TiO2 photodetector has been integrated with a DNA detection method based on non-cross-linking hybridization of DNA-functionalized gold nanoparticles, resulting in a disposable colorimetric biosensor. We present a new approach for the fabrication of dye sensitized TiO2 photodetectors by an inkjet printing technique-a non-contact digital, additive, no mask and no vacuum patterning method, ideal for cost efficient mass production. The developed biosensor was compared against a dye sensitized photodetector fabricated by the traditional "doctor blade" method. Detection of gold nanoparticle aggregation was possible for concentrations as low as 1.0 nM for the "doctor blade" system, and 1.5 nM for the inkjet printed photodetector. The demonstrated sensitivity limits of developed biosensors are comparable to those of spectrophotometric techniques (1.0 nM). Our results show that a difference higher than 17% by traditional photodetector and 6% by inkjet printed in the photoresponses for the complementary and non-complementary gold nanoprobe assays could be attained for a specific DNA sequence from Mycobacterium tuberculosis, the etiologic agent of human tuberculosis. The decrease of costs associated with molecular diagnostic provided by a platform such as the one presented here may prove of paramount importance in developing countries. © 2009 Elsevier B.V. All rights reserved.

C
dede Carvalho, C.Nunes, Nijs Ferreira Fortunato Martins J. M. M. I. "Improvement of the ITO-P interface in a-Si:H solar cells using a thin SiO intermediate layer." Materials Research Society Symposium - Proceedings. Vol. 426. 1996. 25-29. Abstract

The use of ITO films on glass/ITO/p-i-n/metal amorphous silicon solar cells is reviewed. It is suggested a new application for silicon monoxide thin films on the ITO-p interface, as an intermediate layer, to minimize the ITO thin film deterioration process, during the early stage of exposure to a silane plasma rich in hydrogen. The thickness of the silicon monoxide thin films is chosen not to worsen the optical and electrical properties of the ITO thin films. The ITO-p interface is optimized (due to impurities diffusion decrease), leading to an overall improvement of the device performance.

Cui, H.-N.a, Teixeira Meng Martins Fortunato V. a L. -. "Influence of oxygen/argon pressure ratio on the morphology, optical and electrical properties of ITO thin films deposited at room temperature." Vacuum. 82 (2008): 1507-1511. AbstractWebsite

Transparent conductive oxides (TCOs) such as indium tin oxide (ITO) thin films onto glass substrates are widely used as transparent and conductive electrodes for a variety of technological applications including flat panel displays, solar cells, smart windows, touch screens, etc. ITO films on glass and polycarbonate (PC) substrates were prepared at room temperature (RT) and at different PO2. The films were characterized in terms of the surface roughness (δ), sheet resistance, the refractive index (n) and extinction coefficient (k). The free carrier density (nc) and the carrier mobility (μ) of the ITO (In2O3:Sn) films were measured and studied. The nc and μ values vary in different ratio of oxygen partial pressure (PO2) of ITO deposition. The observed changes in the ITO film resistivity are due to the combined effect of different parameter values for nc and μ. From AFM analysis and spectra calculations, the surface roughness values of the ITO films were studied and it was observed that the δ values were lower than 15 nm. The energy band gap Eg ranges from 3.26 eV to 3.66 eV as determined from the absorption spectrum. It was observed an increase on the energy band gap as the PO2 decrease in the range of 20-2% PO2. The Lorentz oscillator classical model has also been used to fit the ellipsometric spectra in order to obtain both refractive index n and extinction coefficient κ values. © 2008 Elsevier Ltd. All rights reserved.

E
Elangovan, E., Martins Fortunato R. E. "Indium molybdenum oxide thin films: A comparative study by two different RF sputtering systems." Physica Status Solidi (A) Applications and Materials Science. 206 (2009): 2123-2127. AbstractWebsite

Indium molybdenum oxide thin films were deposited using different radio-frequency sputtering units on glass substrates at room temperature from an In 2O 3 (95 wt.%): Mo (5 wt.%) target. The film thickness ranges between 160 and 275 nm. The chamber volume of Unit-1 was ̃2.4 times larger than that of Unit-2. Apart from the chamber volume, a significant difference between the two units was the sputtering pressure. The films were characterized by their structural, morphological, optical, and electrical properties. A strong reflection from (222) plane was obtained for the ̃275 nm thick films deposited in Unit-1. The films deposited with <275 nm thickness and those deposited in Unit-2 are close to amorphous with a small crystalline fraction. The surface of the films deposited in Unit-1 is comprised of randomly arranged crystallites, which is restructured with the increasing film thickness to become a well defined "rice field" like structure (275 nm thick). The films deposited in Unit-2 are comprised of many holes on the surface that is presumably due to back sputtering. The average visible transmittance calculated in the wavelength between 400 and 800 nm ranges from 70 to 82%. The optical band gap is found to vary between 3.80 and 3.86 eV. The lowest bulk resistivity of the films deposited in Unit-1 was increased from ̃4.06×10 -3 to 4.07×10 -1ωcm when deposited in Unit-2. The carrier concentration was decreased from 1.31×10 20 to 1.03×10 18 cm -3 but the Hall mobility increased from 11.7 to 15.0 cm2 V -1 s -1. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

F
Fantoni, A.a b, Viera Martins M. a R. b. "Influence of the intrinsic layer characteristics on a-Si:H p-i-n solar cell performance analysed by means of a computer simulation." Solar Energy Materials and Solar Cells. 73 (2002): 151-162. AbstractWebsite

In this paper a set of one-dimensional simulations of a-Si:H p-i-n junctions under different illumination conditions and with different intrinsic layer are presented. The simulation program ASCA permits the analysis of the internal electrical behaviour of the cell allowing a comparison among the different internal configurations determined by a change in the input set. Results about the internal electric configuration will be presented and discussed outlining their influence on the current tension characteristic curve. Considerations about the drift-diffusion and the generation-recombination balance distributions, outlined by the simulation, can be used to explain the correlation between the basic device output, the i-layer characteristics (thickness and DOS), the incident radiation intensity and photon energy. © 2002 Elsevier Science B.V. All rights reserved.

Ferreira, I., Vilarinho Fernandes Fortunato Martins P. F. E. "Influence of hydrogen gas dilution on the properties of silicon-doped thin films prepared by the hot-wire plasma-assisted technique." Key Engineering Materials. 230-232 (2002): 591-594. AbstractWebsite

P- and n-type silicon thin films have been produced using a new hot wire plasma assisted deposition process that combines the conventional plasma enhanced chemical vapor deposition and the hot wire techniques. The films were produced in the presence of different hydrogen gas flow and their optoelectronic, structural and compositional properties have been studied. The optimized optoelectronic results achieved for n-type Si:H films are conductivity at room temperature of 9.4(Ωcm)-1 and optical band gap of 2eV while for p-type SiC:H films these values are 1 × 10-2(Ωcm)-1 and 1.6eV, respectively. The films exhibit the required optoelectronic characteristics and compactness for device applications such as solar cells.

Ferreira, I., Aguas Mendes Fernandes Fortunato Martins H. L. F. "Influence of the H2 dilution and filament temperature on the properties of P doped silicon carbide thin films produced by hot-wire technique." Materials Research Society Symposium - Proceedings. Vol. 507. 1999. 831-836. Abstract

This work deals with the role of hydrogen dilution and filament temperature on the morphology, structure and electrical properties of nanocrystalline boron doped silicon carbide thin films produced by hot-wire technique. The structural and morphological data obtained by XRD, SEM and micro-Raman show that for filament temperatures and hydrogen dilutions above 2100 °C and 90%, respectively, the surface morphology of the films is granular with a needle shape, while for lower filament temperatures and hydrogen dilutions the surface morphology gets honeycomb like. The SIMS analysis reveals that films produced with filament temperatures of about 2200 °C and hydrogen dilution of 99% present a higher hydrogen and carbon incorporation than the films produced at lower temperatures and hydrogen dilutions. These results agree with the electrical and optical characteristics recorded that show that the films produced exhibit optical gaps in the range from 1.8 to 2 eV and transverse conductivities ranging from 10-1 S/cm to 10-3 S/cm, consistent with the degree of films crystallinity and carbon incorporation recorded.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Godinho Almeida Borges Martins P. a A. a. "Influence of the strain on the electrical resistance of zinc oxide doped thin film deposited on polymer substrates." Advanced Engineering Materials. 4 (2002): 610-612. AbstractWebsite

Tensile tests were performed on PET films coated with Al doped zinc oxide films by RF magnetron sputtering. During the tensile elongation, the electrical resistance of the oxide was evaluated in situ. The results indicate that the increase in the electrical resistance is related to the crack debsity and crack width, which also depends on the film thickness.

G
Gaspar, D.a, Pimentel Mateus Leitão Soares Falcão Araújo Vicente Filonovich Águas Martins Ferreira A. C. a T. "Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation." Scientific Reports. 3 (2013). AbstractWebsite

Metallic nanoparticles (NPs) have received recently considerable interest of photonic and photovoltaic communities. In this work, we report the optoelectronic properties of gold NPs (Au-NPs) obtained by depositing very thin gold layers on glass substrates through thermal evaporation electron-beam assisted process. The effect of mass thickness of the layer was evaluated. The polycrystalline Au-NPs, with grain sizes of 14 and 19 nm tend to be elongated in one direction as the mass thickness increase. A 2 nm layer deposited at 250 C led to the formation of Au-NPs with 10-20 nm average size, obtained by SEM images, while for a 5 nm layer the wide size elongates from 25 to 150 nm with a mean at 75 nm. In the near infrared region was observed an absorption enhancement of amorphous silicon films deposited onto the Au-NPs layers with a corresponding increase in the PL peak for the same wavelength region.

c Gokulakrishnan, V.a, Parthiban Elangovan Jeganathan Kanjilal Asokan Martins Fortunato Ramamurthi S. a E. c. "Investigation of O 7+ swift heavy ion irradiation on molybdenum doped indium oxide thin films." Radiation Physics and Chemistry. 81 (2012): 589-593. AbstractWebsite

Molybdenum (0.5at%) doped indium oxide thin films deposited by spray pyrolysis technique were irradiated by 100MeV O 7+ ions with different fluences of 5×10 11, 1×10 12 and 1×10 13ions/cm 2. Intensity of (222) peak of the pristine film was decreased with increase in the ion fluence. Films irradiated with the maximum ion fluence of 1×10 13ions/cm 2 showed a fraction of amorphous nature. The surface microstructures on the surface of the film showed that increase in ion fluence decreases the grain size. Mobility of the pristine molybdenum doped indium oxide films was decreased from  122 to 48cm 2/Vs with increasing ion fluence. Among the irradiated films the film irradiated with the ion fluence of 5×10 11ions/cm 2 showed relatively low resistivity of 6.7×10 -4Ωcm with the mobility of 75cm 2/Vs. The average transmittance of the as-deposited IMO film is decreased from 89% to 81% due to irradiation with the fluence of 5×10 11ions/cm 2. © 2012 Elsevier Ltd.

Gonçalves, G., Elangovan Barquinha Pereira Martins Fortunato E. P. L. "Influence of post-annealing temperature on the properties exhibited by ITO, IZO and GZO thin films." Thin Solid Films. 515 (2007): 8562-8566. AbstractWebsite

In this work we present a study on the effect of annealing temperatures on the structural, morphological, electrical and optical characteristics of gallium doped zinc oxide (GZO), indium zinc oxide (IZO) and indium-tin-oxide (ITO) films. GZO and IZO films were deposited at room temperature by r.f. magnetron sputtering, whereas the ITO films were commercial ones purchased from Balzers. All films were annealed at temperatures of 250 and 500 °C in open air for 1 h. The GZO and ITO films were polycrystalline. The amorphous structure of as-deposited IZO films becomes crystalline on high temperature annealing (500 °C). The sheet resistivity increased with increase in annealing temperature. GZO films showed an increase of 6 orders of magnitude. The optical transmittance and band gap of as-deposited films varied with annealing. The highest transmittance (over 95 %) and maximum band gap (3.93 eV) have been obtained for ITO films. © 2007 Elsevier B.V. All rights reserved.

J
Jin, J.W.a, Nathan Barquinha Pereira Fortunato Martins Cobb A. b P. c. "Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress." AIP Advances. 6 (2016). AbstractWebsite

Oxide semiconductor thin-film transistors can show anomalous behavior under bias stress. Two types of anomalies are discussed in this paper. The first is the shift in threshold voltage (VTH) in a direction opposite to the applied bias stress, and highly dependent on gate dielectric material. We attribute this to charge trapping/detrapping and charge migration within the gate dielectric. We emphasize the fundamental difference between trapping/detrapping events occurring at the semiconductor/dielectric interface and those occurring at gate/dielectric interface, and show that charge migration is essential to explain the first anomaly. We model charge migration in terms of the non-instantaneous polarization density. The second type of anomaly is negative VTH shift under high positive bias stress, with logarithmic evolution in time. This can be argued as electron-donating reactions involving H2O molecules or derived species, with a reaction rate exponentially accelerated by positive gate bias and exponentially decreased by the number of reactions already occurred. © 2016 Author(s).