Publications

Export 38 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
c Nunes, D.a, Calmeiro Nandy Pinto Pimentel Barquinha Carvalho Walmsley Fortunato Martins T. R. a S. "Charging effects and surface potential variations of Cu-based nanowires." Thin Solid Films. 601 (2016): 45-53. AbstractWebsite

The present work reports charging effects and surface potential variations in pure copper, cuprous oxide and cupric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved through microwave irradiation and cupric oxide nanowires were obtained via furnace annealing in atmospheric conditions. Structural characterization of the nanowires was carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO2 dielectric substrate. Both the probe/nanowire capacitance as well as the substrate polarization increased with the applied bias. Cu2O and CuO nanowires behaved distinctively during the EFM measurements in accordance with their band gap energies. The work functions (WF) of the Cu-based nanowires, obtained by KPFM measurements, yielded WFCuO > WFCu > WFCu2O. © 2015 Elsevier B.V.

Moldovan, O.a, Castro-Carranza Cerdeira Estrada Barquinha Martins Fortunato Miljakovic Iñiguez A. b A. c. "A compact model and direct parameters extraction techniques For amorphous gallium-indium-zinc-oxide thin film transistors." Solid-State Electronics. 126 (2016): 81-86. AbstractWebsite

An advanced compact and analytical drain current model for the amorphous gallium indium zinc oxide (GIZO) thin film transistors (TFTs) is proposed. Its output saturation behavior is improved by introducing a new asymptotic function. All model parameters were extracted using an adapted version of the Universal Method and Extraction Procedure (UMEM) applied for the first time for GIZO devices in a simple and direct form. We demonstrate the correct behavior of the model for negative VDS, a necessity for a complete compact model. In this way we prove the symmetry of source and drain electrodes and extend the range of applications to both signs of VDS. The model, in Verilog-A code, is implemented in Electronic Design Automation (EDA) tools, such as Smart Spice, and compared with measurements of TFTs. It describes accurately the experimental characteristics in the whole range of GIZO TFTs operation, making the model suitable for the design of circuits using these types of devices. © 2016 Elsevier Ltd

2015
Ullaha, S.a, De Matteis Branquinho Fortunato Martins Davoli F. a R. b. "A combination of solution synthesis & solution combustion synthesis for highly conducting and transparent Aluminum Zinc Oxide thin films." IEEE-NANO 2015 - 15th International Conference on Nanotechnology. 2015. 144-147. Abstract

Aluminum Zinc Oxide has been extensively investigated as a cheap alternative to transparent conducting tin oxide films for electronic and optoelectronic applications. Thin films of Aluminum Zinc Oxide have been developed successfully through a combination of solution combustion synthesis and solution synthesis. Zn(NO3)3·6H2O as metal source was dissolved in 2-methoxyethanol as solvent through combustion synthesis with Urea as fuel while dopant source of AlCl3·6H2O was mixed separately in solvent to avoid aluminum oxide formation in the films. Precursor solutions were obtained mixing Zn & Al separate solutions in 9:1, 8:2, and 7:3 ratios respectively with oxide, fuel and dopant concentrations of 0.5, 0.25, 0.1, and 0.05 M. The film stacks have been prepared through spin-coating with heating at 400°C for 10 minutes after each deposition to remove residuals and evaporate solvents. Thermal annealing in oven at 600°C for 1 hour followed by rapid thermal annealing at 500°C & 600°C first in vacuum and then in N2-5%H2 environment respectively for 10 minutes each reduced the resistivity of film stacks. Film stack with 10 layers for an average thickness of 0.5μm gave the best Hall Effect resistivity of 3.2 × 10-2 -cm in the case of 0.5M solution with Zn:Al mixing ratio of 9:1 for RTA annealings at 600°C with an average total transparency of 80 % in the wavelength range of 400-1200 nm. The results show a clear trend that increasing the amount of ingredients resistivity could further be decreased. © 2015 IEEE.

G-Berasategui, E.a, Bayón Zubizarreta Barriga Barros Martins Fortunato R. a C. a. "Corrosion resistance analysis of aluminium-doped zinc oxide layers deposited by pulsed magnetron sputtering." Thin Solid Films. 594 (2015): 256-260. AbstractWebsite

In this paper an exhaustive analysis is performed on the electrochemical corrosion resistance of Al-doped ZnO (AZO) layers deposited on silicon wafers by a DC pulsed magnetron sputtering deposition technique to test layer durability. Pulse frequency of the sputtering source was varied and a detailed study of the electrochemical corrosion response of samples in the presence of a corrosive chloride media (NaCl 0.06 M) was carried out. Electrochemical impedance spectroscopy measurements were performed after reaching a stable value of the open circuit at 2 h, 192 h and 480 h intervals. Correlation of the corrosion resistance properties with the morphology, and the optical and electrical properties was tested. AZO layers with transmission values higher than 84% and resistivity of 6.54 × 10- 4 â. cm for a deposition process pressure of 3 × 10- 1 Pa, a sputtering power of 2 kW, a pulse frequency of 100 kHz, with optimum corrosion resistance properties, were obtained. © 2015 Elsevier B.V.

2014
b b b b d b b Contreras, J.a b, Martins Wojcik Filonovich Aguas Gomes Fortunato Ferreira R. a P. a. "Color sensing ability of an amorphous silicon position sensitive detector array system." Sensors and Actuators, A: Physical. 205 (2014): 26-37. AbstractWebsite

The color sensing ability of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) was analyzed. Besides being used to reproduce a 3D profile of highly reflective surfaces, here we show that it can also differentiate primary red, green, blue (RGB) and derived colors. This was realized by using an incident beam with a RGB color combination and adequate integration times taking into account that a color surface mostly reflects its corresponding color. A mean colorimetric error of 25.7 was obtained. Overall, we show that color detection is possible via the use of this sensor array system, composed by a simpler amorphous silicon pin junction. © 2013 Elsevier B.V. All rights reserved.

2013
Lajn, A.a, Von Wenckstern Grundmann Wagner Barquinha Fortunato Martins H. a M. a. "Comparative study of transparent rectifying contacts on semiconducting oxide single crystals and amorphous thin films." Journal of Applied Physics. 113 (2013). AbstractWebsite

We demonstrate fully transparent, highly rectifying contacts (TRC) on amorphous GaInZnO and compare them to TRC fabricated on single crystalline bulk ZnO and heteroepitaxial ZnO thin films. The contacts' transparency in the visible spectral range exceeds 70%. From numerical simulations, we conclude that thermionic emission is the dominating transport mechanism, however, for several samples with low net doping density diffusion theory must be applied. The detailed investigation of the rectification properties of the TRC using temperature-dependent current-voltage and capacitance-voltage measurements reveals that barrier inhomogeneities govern the IV-characteristics of all diodes irrespective of the sample crystallinity. Assuming a Gaussian barrier height distribution, the extracted mean barrier heights typically range between 1.1 and 1.3 V. The width of the barrier distribution correlates with the mean barrier height and ranges from 110 to 130 mV. By compiling literature data, we found that this correlation holds also true for Schottky diodes on elemental and III-V semiconductors. © 2013 American Institute of Physics.

Martins, R.M., Pereira Siqueira Salomão Freitas S. V. S. "Curcuminoid content and antioxidant activity in spray dried microparticles containing turmeric extract." Food Research International. 50 (2013): 657-663. AbstractWebsite

Curcuma longa L., also known as turmeric, is widely used as a food colorant and has been reported to have antioxidant, anti-inflammatory, anti-mutagenic and anti-cancer properties. The aim of this study was to evaluate the effects of the spray drying on curcuminoid and curcumin contents, antioxidant activity, process yield, the morphology and solubility of the microparticulated solid dispersion containing curcuma extract using a Box Behnken design. The microparticles were spherical in shape, and an increase in outlet temperature from 40 to 80 °C resulted in a significant increase in the yield of microparticles from 16 to 53%. The total curcuminoid content (17.15 to 19.57. mg/g), curcumin content (3.24 to 4.25. mg/g) and antioxidant activity (530.1 to 860.3 μg/mL) were also affected by the spray drying process. The solubility of curcuminoid from C. longa remarkably improved 100-fold in the microparticles, confirming the potential of the ternary solid dispersion technique to improve the dyeing and nutraceutical properties of these compounds. Furthermore, the microparticles were obtained using the spray drying process, can be easily scaled up. © 2011 Elsevier Ltd.

Nandy, S., Gonçalves Pinto Busani Figueiredo Pereira Paiva Martins Fortunato G. J. V. "Current transport mechanism at metal-semiconductor nanoscale interfaces based on ultrahigh density arrays of p-type NiO nano-pillars." Nanoscale. 5 (2013): 11699-11709. AbstractWebsite

The present work focuses on a qualitative analysis of localised I-V characteristics based on the nanostructure morphology of highly dense arrays of p-type NiO nano-pillars (NiO-NPs). Vertically aligned NiO-NPs have been grown on different substrates by using a glancing angle deposition (GLAD) technique. The preferred orientation of as grown NiO-NPs was controlled by the deposition pressure. The NiO-NPs displayed a polar surface with a microscopic dipole moment along the (111) plane (Tasker's type III). Consequently, the crystal plane dependent surface electron accumulation layer and the lattice disorder at the grain boundary interface showed a non-uniform current distribution throughout the sample surface, demonstrated by a conducting AFM technique (c-AFM). The variation in I-V for different points in a single current distribution grain (CD-grain) has been attributed to the variation of Schottky barrier height (SBH) at the metal-semiconductor (M-S) interface. Furthermore, we observed that the strain produced during the NiO-NPs growth can modulate the SBH. Inbound strain acts as an external field to influence the local electric field at the M-S interface causing a variation in SBH with the NPs orientation. This paper shows that vertical arrays of NiO-NPs are potential candidates for nanoscale devices because they have a great impact on the local current transport mechanism due to its nanostructure morphology. © 2013 The Royal Society of Chemistry.

2011
Nolan, M.G.a, Hamilton Obrien Bruno Pereira Fortunato Martins Povey Pemble J. A. a S. "The characterisation of aerosol assisted CVD conducting, photocatalytic indium doped zinc oxide films." Journal of Photochemistry and Photobiology A: Chemistry. 219 (2011): 10-15. AbstractWebsite

Indium doped, and undoped, zinc oxide films were deposited using aerosol assisted chemical vapour deposition (AACVD) at atmospheric pressure on glass substrates. Electrical measurements (I-V) showed a reduction in resistivity following the addition of indium, and XRD analysis revealed an associated switch to c-axis preferred crystal orientation. The ability of the films to oxidise organic material on their surface was analysed using stearic acid as the model contaminant under ultra-violet (UV, 365 nm) irradiation. The In-doped films displayed a greater rate of organic decomposition, which we attribute to the formation of a platelet surface structure having a larger surface area than the undoped films, on which the UV generated electrons and holes may react to form active photocatalytic species. In addition we suggest that the switch to c-axis crystal orientation may reduce the electron-hole pair recombination rate at the grain boundaries, due to an improvement in crystallinity and related reduction in carrier scattering losses, leading to an increase in photocatalytic organic decomposition rate. © 2011 Elsevier B.V. All rights reserved.

Martins, R.a, Nathan Barros Pereira Barquinha Correia Costa Ahnood Ferreira Fortunato A. b R. a. "Complementary metal oxide semiconductor technology with and on paper." Advanced Materials. 23 (2011): 4491-4496. AbstractWebsite

A complementary metal oxide semiconductor (CMOS) device is described. The device is based on n-(In-Ga-Zn-O) and p-type (SnO x) active oxide semiconductors and uses a transparent conductive oxide (In-Zn-O) as gate electrode that sits on a flexible, recyclable paper substrate that is simultaneously the substrate and the dielectric. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

2008
Silva, L.B.a, Baptista Raniero Doria Martins Fortunato P. b L. c. "Characterization of optoelectronic platform using an amorphous/nanocrystalline silicon biosensor for the specific identification of nucleic acid sequences based on gold nanoparticle probes." Sensors and Actuators, B: Chemical. 132 (2008): 508-511. AbstractWebsite

Nanotechnology is having a positive impact on nearly every industry, and in particular in healthcare, where it is extending the limits of molecular diagnostics to the nanoscale-nanodiagnostics. Here we describe an innovative optoelectronic platform for the colorimetric detection of nucleic acids based on oligonucleotide-derivatized gold nanoparticles. The device integrates an amorphous/nanocrystalline biosensor and a light emission source with a gold nanoprobe for specific DNA detection. This low cost, fast and simple optoelectronic platform permits detection of few picomole of nucleic acid without target or signal amplification making it suitable for application in population diagnostics and in point-of-care hand-held devices. © 2007 Elsevier B.V. All rights reserved.

Wang, J.a, Elamurugu Barradas Alves Rego Gonçalves Martins Fortunato E. a N. P. "Co-doping of aluminium and gallium with nitrogen in ZnO films deposited by RF magnetron sputtering." Journal of Physics Condensed Matter. 20 (2008). AbstractWebsite

N, (N+Ga) and (N+Al) doped ZnO films were deposited on c-plane sapphire substrates by RF magnetron sputtering at room temperature. The samples were characterized by their structural, surface morphological, compositional and optical properties. The x-ray diffraction studies confirmed the co-doping of (N+Ga) and (N+Al) besides showing improvement in the crystallinity when compared with the single Ndoping. The surface of the films becomes rougher after co-doping. The x-ray photoelectron spectroscopy and Rutherford back-scattering analysis indicate that the co-doping changes the chemical states and varies the amount of nitrogen (N) in ZnO. The amount of 'N' has been greatly increased for (N+Ga) co-doping, indicating that it is the best co-doping pair for p-type ZnO. Additionally, co-doping has increased the average visible transmittance (40-650nm) and the optical band gap is shifted towards shorter wavelength. In the case of (N+Al) co-doping, the band gap becomes wider than that of undoped ZnO. © IOP Publishing Ltd.

Gonçalves, G., Barquinha Raniero Martins Fortunato P. L. R. "Crystallization of amorphous indium zinc oxide thin films produced by radio-frequency magnetron sputtering." Thin Solid Films. 516 (2008): 1374-1376. AbstractWebsite

In this work we studied indium zinc oxide (IZO) thin films deposited by r.f. magnetron sputtering at room temperature. The films were annealed at high temperature (1100 K) in vacuum, and the oxygen exodiffusion was monitored in-situ. The results showed three main peaks, one at approximately 600 K, other at approximately 850 K and the last one at 940 K, which are probably from oxygen bonded in the film surface and in the bulk, respectively. The initial amorphous structure becomes microcrystalline, according to the X-ray diffraction. The electrical conductivity of the films decreases (about 3 orders of magnitude), after the annealing treatment. This behavior could be explained by the crystallization of the structure, which affects the transport mechanism. Apart from the changes in the material structure, a small variation was observed on the absorption coefficient. © 2007 Elsevier B.V. All rights reserved.

2007
Pereira, L.a, Aguas Beckers Martins Fortunato Martins H. a M. b. "Characterization of nickel induced crystallized silicon by spectroscopic ellipsometry." Materials Research Society Symposium Proceedings. Vol. 910. 2007. 529-534. Abstract

In this work Spectroscopic Ellipsometry (SE) was used to study metal induced crystallization (MIC) on amorphous silicon films in order to analyze the influence of different annealing conditions on their structural properties. The variation of the metal thickness has shown to be determinant on the time needed to full crystallize silicon films. Films of 100 nm thickness crystallize after 2h at 500°C using 1 nm of Ni deposited on it. When reducing the average metal thickness down to 0.05 nm the same silicon film will need almost 10 hours to be totally crystallized. Using a new approach on the modelling procedure of the SE data we show to be possible to determine the Ni remaining inside the crystallized films. The method consists in using Ni as reference on the Bruggeman Effective Medium Approximation (BEMA) layer that will simulated the optical response of the crystallized silicon. Silicon samples and metal layers with different thicknesses were analyzed and this new method has shown to be sensible to changes on the initial metal/silicon ratio. The nickel distribution inside the silicon layers was independently measured by Rutherford Backscattering Spectroscopy (RBS) to check the data obtained from the proposed approach. © 2006 Materials Research Society.

2006
Zhang, S., Pereira Hu Ranieiro Fortonato Ferreira Martins L. Z. L. "Characterization of nanocrystalline silicon carbide films." Journal of Non-Crystalline Solids. 352 (2006): 1410-1415. AbstractWebsite

Amorphous silicon carbide films were obtained by plasma enhanced chemical vapor deposition (PECVD) technique using a gas mixture of silane, methane, and hydrogen with a high excitation frequency and a high hydrogen dilution ratio. The high temperature annealing behavior of the amorphous silicon carbide films was studied by annealing at 1373 K for 1 h in nitrogen atmosphere. A very thin Au film was deposited on part of the films to investigate the metal induced crystallization effect. Well aligned nanotubes were found on the silicon carbide films covered by a thin gold layer after the high temperature annealing by atomic force microscopy. Further study is necessary to identify the nature of the nanotubes and elucidate their growth mechanism. © 2006 Elsevier B.V. All rights reserved.

Martins, J.I.a, Costa Bazzaoui Gonçalves Fortunato Martins S. C. a M. "Conditions to prepare PPy/Al2O3/Al used as a solid-state capacitor from aqueous malic solutions." Journal of Power Sources. 160 (2006): 1471-1479. AbstractWebsite

The electrosynthesis of polypyrrole (PPy) has been achieved on aluminium in aqueous medium of malic acid by means of cyclic voltammetry, potentiostatic and galvanostatic techniques. Scanning electron microscopy (SEM) and X-ray microanalysis by dispersion energy spectroscopy (EDS) applying on surfaces show that the PPy coating is developed from the metal surface through the cracks of the initial Al2O3 layer. Moreover, the results reveal that the homogeneity of the film achieved increases with the time of electropolymerization. A mechanism involving the participation of the supporting electrolyte and the pyrrole (Py) in distinct active sites was proposed based on the linear sweep voltammetry. It is observed for all the applied electrochemical techniques that the pyrrole concentration has to be higher than 0.1 M to allow the polypyrrole electrodeposition in acid medium. Scanning electron microscopy, secondary electrons (SE) and backscattering electrons (BE), shows that the PPy coating obtained in galvanostatic and potentiostatic modes starts with small islands at weak applied potentials or current densities. The corrosion results in 3% NaCl medium show that the PPy coating decreases the corrosion behaviour of the aluminium. The bilayer Al2O3/PPy shows a capacitor with future applications. © 2006 Elsevier B.V. All rights reserved.

2005
d d Zhang, S.a b, Raniero Fortunato Liao Hu Ferreira Águas Ramos Alves Martins L. a E. a. "Characterization of silicon carbide thin films and their use in colour sensor." Solar Energy Materials and Solar Cells. 87 (2005): 343-348. AbstractWebsite

A series of hydrogenated amorphous silicon carbide (a-Si 1- xC x:H) films were prepared by plasma-enhanced chemical vapour deposition (PECVD) using a gas mixture of silane, methane, and hydrogen as the reactive source. The previous results show that a high excitation frequency, together with a high hydrogen dilution ratio of the reactive gases, allow an easier incorporation of the carbon atoms into the silicon-rich a-Si 1-xC x:H film, widen the valence controllability. The data show that films with optical gaps ranging from about 1.9 to 3.6 eV could be produced. In this work the influence of the hydrogen dilution ratio of the reactive gases on the a-Si 1-xC x:H film properties was investigated. The microstuctural and photoelectronic properties of the silicon carbide films were characterized by Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), and FT-IR spectrometry. The results show that a higher hydrogen dilution ratio enhances the incorporation of silicon atoms in the amorphous carbon matrix for carbon-rich a-Si 1-xC x:H films. One pin structure was prepared by using the a-Si 1-xC x:H film as the intrinsic layer. The light spectral response shows that this structure fits the requirement for the top junction of colour sensor. © 2004 Elsevier B.V. All rights reserved.

2004
Zhang, S.a b, Xu Liao Martins Fortunate Zeng Hu Kong Y. a X. a. "Characterization of polymorphous silicon thin film and solar cells." Materials Science Forum. 455-456 (2004): 77-80. AbstractWebsite

Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (σph), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR. spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm2) at room temperature (T R).

Zhang, S., Raniero Fortunato Pereira Martins Canhola Ferreira Nedev Águas Martins L. E. L. "Characterization of silicon carbide thin films prepared by VHF-PECVD technology." Journal of Non-Crystalline Solids. 338-340 (2004): 530-533. AbstractWebsite

A series of hydrogenated amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition (PECVD) using a gas mixture of silane, methane, and hydrogen as the reactive source and an excitation frequency of 27.12 MHz. Compared to the typical radio frequency deposition technique, the very high plasma excitation frequency increases the density of the electrons and decreases the electron temperature, which helps the dissociation of the SiH4 and CH4, and reduces the energetic ion impact on the growth surface of the thin film. Thus, dense-films with lower bulk density of states and higher growth rate are expected, as confirmed by spectroscopic ellipsometry data. Apart from that, a substantial reduction of bulk defects is achieved, allowing an improvement of the valence controllability (widening of the optical gap from about 1.9 to 3.6 eV). In this work results concerning the microstuctural and photoelectronic properties of the silicon carbide films will be discussed in detail, correlating them with the deposition process conditions used as well as with the gas phase composition of the mixtures used. © 2004 Elsevier B.V. All rights reserved.

Raniero, L., Pereira Zhang Ferreira Águas Fortunato Martins L. S. I. "Characterization of the density of states of polymorphous silicon films produced at 13.56 and 27.12 MHz using CPM and SCLC techniques." Journal of Non-Crystalline Solids. 338-340 (2004): 206-210. AbstractWebsite

The aim of this paper is to compare the density of bulk states (DOS) of polymorphous silicon (pm-Si:H) films produced by plasma enhanced chemical vapor deposition at 13.56 and 27.12 MHz using the constant photocurrent method and the space charge limited current (SCLC) technique. The data achieved revealed that the set of films produced present similar DOS. Apart from that, data concerning the correlation of the deposition conditions that lead to the production of pm-Si:H as well as their characteristics, such as the hydrogen content and how hydrogen is bonded, will be discussed, giving special emphasis to the set of mechanical stresses developed. By doing so we could get a better understanding of the nature of hydrogen bonding in pm-Si:H films as well as to determine the role of the excitation frequency on the film's performances, where films with amounts of hydrogen around 20 at.% can have DOS as low as 8 × 10 14 cm-3 with Urbach energies in the range of 41-50 meV. © 2004 Elsevier B.V. All rights reserved.

i Martins, R.a, Águas Ferreira Fortunato Raniero Roca Cabarrocas H. a I. a. "Composition, structure and optical characteristics of polymorphous silicon films deposited by PECVD at 27.12 MHz." Materials Science Forum. 455-456 (2004): 100-103. AbstractWebsite

This paper presents data concerning the composition structure and optical characteristics of polymorphous silicon films produced by plasma enhanced chemical vapour deposition at 27.12 MHz and determined respectively by infrared spectrometry, micro Raman, exodiffusion and spectroscopic ellipsometry measurements. When compared to the pm-Si:H films produced at 13.56 MHz, the films produced at 27.12 MHz present hydrogen contents in the range of 21 at%, the sharp peak ascribed to the exodifusion measurements is shifted towards high temperatures and the imaginary part of the dielectric function 〈ε2〉 is larger and shifted to high energies. Apart from that the peaks of the infrared spectra ascribed to the stretching modes shift towards high wave numbers and the half width of the micro Raman peaks shrinks, meaning that the films produced at 27.12 MHz are more compact and dense.

2003
Fortunate, E., Assunção Marques Ferreira Águas Pereira Martins V. A. I. "Characterization of transparent and conductive ZnO:Ga thin films produced by rf sputtering at room temperature." Materials Research Society Symposium - Proceedings. Vol. 763. 2003. 225-230. Abstract

Gallium-doped zinc oxide films were prepared by rf magnetron sputtering at room temperature as a function of the substrate-target distance. The best results were obtained for a distance of 10 cm, where a resistivity as low as 2.7×10-4 Ωcm, a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3×1021 cm-3 were achieved. The films are polycrystalline presenting a strong crystallographic c-axis orientation (002) perpendicular to the substrate. The films present an overall transmittance in the visible part of the spectra of about 85 %, in average. The low resistivity, accomplished with a high growth rate deposited at RT, enables the deposition of these films onto polymeric substrates for flexible applications.

Ferreira, I., Fortunato Martins E. R. "Combining HW-CVD and PECVD techniques to produce a-Si:H films." Thin Solid Films. 427 (2003): 231-235. AbstractWebsite

Amorphous undoped a-Si:H films have been produced by hot wire plasma assisted chemical vapour deposition (HWPA-CVD), which combines the hot wire chemical vapour deposition (HW-CVD) and plasma enhanced chemical vapour deposition techniques. In this work we analyse the dissociation mechanism of the gas during the film growth in both processes with a quadrupole mass spectrometer. Besides that, the energy delivered to the gas dissociation is determined and correlated with the films properties. Thus, based on the results of the dissociated species for each deposition condition and process, we explain why the growth rate is enhanced when the filament temperature rises in HW-CVD process and why it decreases as r.f. power is enhanced in HWPA-CVD process. © 2002 Elsevier Science B.V. All rights reserved.

Águas, H.a, Pereira Goullet Silva Fortunato Martins L. a A. b. "Correlation between the Tunnelling Oxide and I-V Curves of MIS Photodiodes." Materials Research Society Symposium - Proceedings. Vol. 762. 2003. 217-222. Abstract

In this work we present results of a study performed on MIS diodes with the following structure: substrate (glass) / Cr (2000Å) / a-Si:H n + (400Å) / a-Si:H i (5500Å) / oxide (0-40Å) / Au (100Å) to determine the influence of the oxide passivation layer grown by different techniques on the electrical performance of MIS devices. The results achieved show that the diodes with oxides grown using hydrogen peroxide present higher rectification factor (2×106) and signal to noise (S/N) ratio (1×107 at -1V) than the diodes with oxides obtained by the evaporation of SiO2, or by the chemical deposition of SiO 2 by plasma of HMDSO (hexamethyldisiloxane), but in the case of deposited oxides, the breakdown voltage is higher, 30V instead of 3-10 V for grown oxides. The ideal oxide thickness, determined by spectroscopic ellipsometry, is dependent on the method used to grow the oxide layer and is in the range between 6 and 20 Å. The reason for this variation is related to the degree of compactation of the oxide produced, which is not relevant for applications of the diodes in the range of ± 1V, but is relevant when high breakdown voltages are required.

loading