Pereira, L.a, Brida Fortunato Ferreira Águas Silva Costa Teixeira Martins D. a E. a. "
a-Si:H interface optimisation for thin film position sensitive detectors produced on polymeric substrates."
Journal of Non-Crystalline Solids. 299-302 (2002): 1289-1294.
AbstractIn this paper we present results concerning the optimisation of the electronic and mechanical properties presented by amorphous silicon (a-Si:H) thin films produced on polyimide (Kapton® VN) substrates with different thicknesses (25, 50 and 75 μm) by the plasma enhanced chemical vapour deposition (PECVD) technique. The purpose of this study is to obtain a low defect density as well as low residual stresses (specially at the interface) in order to provide good performances for large area (10 mm wide by 80 mm long) flexible position sensitive detectors. The electrical and optical properties presented by the films will be correlated to the sensor characteristics. The properties of samples have been measured by dark/photoconductivity, constant photocurrent measurements (CPM) and the results have been compared with films deposited on Corning 7059 glass substrates during the same run deposition. The residual stresses were measured using an active optical triangulation and angle resolved scattering. The preliminary results indicate that the thinner polymeric substrate with 25 μm presents the highest density of states, which is associated to the residual stresses and strains associated within the film. © 2002 Elsevier Science B.V. All rights reserved.
Pereira, L., Águas Martins Fortunato Martins H. R. M. "
Polycrystalline silicon obtained by gold metal induced crystallization."
Journal of Non-Crystalline Solids. 338-340 (2004): 178-182.
AbstractThe aim of this paper is to study the role of gold (Au) induced crystallization on amorphous silicon (a-Si) films produced by low pressure chemical vapor deposition (LPCVD) at low process temperatures (550 °C) to allow the use of glass substrates. Concerning the crystallization process Au was deposited by e-beam thermal evaporation over the silicon (Si), using different metal thickness, from 5 to 100 Å. The samples were then annealed at 450, 500 and 550 °C and the crystallization time was changed from 5 up to 30 h. The structure of the films was analyzed by X-ray diffraction (XRD) and spectroscopic ellipsometry (SE) while electrical conductivity measurements were performed to obtain the electrical properties of the films produced, namely the activation energy (EA) and how it changes with the Au thickness used. The data achieved show that the increase of the metal layer thickness decreases the time needed to get full crystallization. However this leads to lower conduction activation energy (EA) meaning that there is also an increase of Au incorporation that leads to the production of doped films. © 2004 Elsevier B.V. All rights reserved.
Pereira, L., Águas Raniero Martins Fortunate Martins H. L. R. "
Role of substrate on the growth process of polycrystalline silicon thin films by low-pressure chemical vapour deposition."
Materials Science Forum. 455-456 (2004): 112-115.
AbstractThis paper deals with the role the substrate on the structure of undoped and n-doped polycrystalline silicon (poly-Si) films produced by Low Pressure Chemical Vapour Deposition (LPCVD). The structural and electrical properties of the films deposited on glass, glass covered with molybdenum (Mo), oxidised crystalline silicon and oxidised crystalline silicon covered with Mo were analysed using X-ray diffraction and Spectroscopic Ellipsometry, dark conductivity and Hall effect measurements. Undoped poly-Si films deposited over Mo present modifications in the crystalline structure relatively to those deposited on the other substrates. The presence of Mo changes the preferential growth orientation, enhancing the Si {111} grains orientation, leading to more compact films. The electrical measurements also confirm that the films grown on Mo substrates present better characteristics. Some differences are also observed during the initial growth stages when using glass or oxidised silicon. Very thin n-doped films present a less effective doping effect when deposited on oxidised silicon than the ones deposited on glass substrates.
Pereira, L.a, Martins Schell Fortunato Martins R. M. S. b. "
Nickel-assisted metal-induced crystallization of silicon: Effect of native silicon oxide layer."
Thin Solid Films. 511-512 (2006): 275-279.
AbstractThis work focuses on the role of the native oxide layer (SiO2) on the nickel (Ni)-assisted crystallization of amorphous silicon (a-Si). In some samples, the native oxide was removed using a HF-diluted solution before Ni layers with 0.5 nm be deposited on a-Si. The results show that the presence of a thin SiO2 layer of about 3 nm between the a-Si and the Ni delays the crystallization process. Ellipsometry data show that, after annealing for 5 h at 500 °C, the HF-cleaned sample presents a crystalline fraction of 88%, while the one with the native oxide has only 35%. This difference disappears after 20 h where both samples present similar crystalline fraction. These facts are also reflected on the film's electrical properties, where the activation energy for samples annealed for 5 h rises from 0.42 eV to 0.55 eV, when the oxide layer is removed. After 20 h and 30 h, the activation energy is around 0.55 eV for both kinds of samples, meaning that films with similar electrical properties are now obtained. However, the XRD data suggest the presence of some structural differences attributed to slight differences on the crystallization process. © 2005 Elsevier B.V. All rights reserved.
Pereira, L.a, Aguas Beckers Martins Fortunato Martins H. a M. b. "
Characterization of nickel induced crystallized silicon by spectroscopic ellipsometry."
Materials Research Society Symposium Proceedings. Vol. 910. 2007. 529-534.
AbstractIn this work Spectroscopic Ellipsometry (SE) was used to study metal induced crystallization (MIC) on amorphous silicon films in order to analyze the influence of different annealing conditions on their structural properties. The variation of the metal thickness has shown to be determinant on the time needed to full crystallize silicon films. Films of 100 nm thickness crystallize after 2h at 500°C using 1 nm of Ni deposited on it. When reducing the average metal thickness down to 0.05 nm the same silicon film will need almost 10 hours to be totally crystallized. Using a new approach on the modelling procedure of the SE data we show to be possible to determine the Ni remaining inside the crystallized films. The method consists in using Ni as reference on the Bruggeman Effective Medium Approximation (BEMA) layer that will simulated the optical response of the crystallized silicon. Silicon samples and metal layers with different thicknesses were analyzed and this new method has shown to be sensible to changes on the initial metal/silicon ratio. The nickel distribution inside the silicon layers was independently measured by Rutherford Backscattering Spectroscopy (RBS) to check the data obtained from the proposed approach. © 2006 Materials Research Society.