Publications

Export 109 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Maçarico, A.a, Vieira Fantoni Louro Sêco Martins Hollenstein M. a A. a. "On the a-Si:H film growth: The role of the powder formation." Journal of Non-Crystalline Solids. 198-200 (1996): 1207-1211. AbstractWebsite

Results are presented which are geared towards an understanding of the influence of powder formation during film growth. Plasma chemistry is correlated with the morphology, structure (inferred through infrared spectroscopy, scanning electron microscopy and X-ray diffraction) electro-optical and density of states of intrinsic films deposited under continuous and power modulated operation. Results show that for modulation frequencies where no powder formation occurs and low substrate temperatures T (150°C), silane decomposition gives rise to the growth of inhomogeneous films while in the high modulation frequency regime, at the same temperature, the anions and powder are trapped resulting in films with high deposition rates and low defect density.

Madan, A.a, Martins R. b. "From materials science to applications of amorphous, microcrystalline and nanocrystalline silicon and other semiconductors." Philosophical Magazine. 89 (2009): 2431-2434. AbstractWebsite

The special Professor Walter E. Spear commemoration issue of the Philosophical Magazine, published in October 2009, contains papers which cover the numerous relevant issues, driven by commercial applications, primarily solar energy and displays. Kocka reviews the complex microstructure of crystallites embedded in the amorphous silicon tissue, the transport mechanism is determined by the conductive grains and influenced by the passivation through H at the grain boundaries. Hugger and co-researchers report on transient photocapacitance spectroscopy and drive-level capacitance profiling as a way of elucidating the fundamental electronic properties of hydrogenated ncSi. Tawada recounts the history of a-Si:H pin heterojunction solar cells, emphasizing the role of the p-type silicon carbide layer in the improvement of the device. Schubert and colleagues focus their work on the production of flexible PV modules with many applications in the architectural arena or integrated into clothing.

Malik, Alexander, Martins Rodrigo. "Silicon active optical sensors: from functional photodetectors to smart sensors." Sensors and Actuators, A: Physical. 68 (1998): 359-364. AbstractWebsite

We have developed new types of functional and smart optical silicon sensors, based on ITO/multichannel insulator/silicon structures, which are able to execute electronic functions such as amplifying the photocurrent (without avalanche multiplication), transforming the input optical signal into a radio frequency output signal and transforming the analogue input optical signal to a digital output form, without external active electronic components. These new functional optical sensors allow as substantial simplification of the registration of optical signals as well as of the electronic scheme to be used.

Malik, A., Seco Nunes Vieira Fortunato Martins A. R. M. "Spray-deposited metal oxide films with various properties for micro- and optoelectronic applications: Growth and characterization." Materials Research Society Symposium - Proceedings. Vol. 471. 1997. 47-52. Abstract

This work reports the structure and electro-optical characteristics of different metal oxide films obtained by spray pyrolysis on heated glass substrates, aiming their application in optoelectronic devices. The results show that this technique leads to thin films with properties ranging from dielectric to degenerate semiconductors, offering the following advantages: simplicity, low cost, high productivity and the possibility of covering large areas, highly important for large area device applications.

Malik, A., Martins R. "Light-controlled switching transients in MIS silicon structures with multichannel insulator: physical processes and new device modelling." Materials Research Society Symposium - Proceedings. Vol. 490. 1998. 257-262. Abstract

We present the modelling of a new two-terminal and low-voltage operating optoelectronic device based on MIS silicon structure with multichannel insulator and having as gate a transparent metallic tin-doped indium oxide (ITO) layer deposited by spray pyrolysis technique over the insulator layer. ITO layer has a multiple non-rectifier electrical contact with silicon substrate, in the SiO2 channel's region. Construction details of the process, together with its operating characteristics are given. The devices developed do not require external active electronic components (transistors, microschemes) to execute their functions and to transform analogue input optical signals to digital output form, highly important for a wide range of optoelectronic applications.

Malik, A., Martins R. "UV enhanced and solar blind photodetectors based on large-band-gap materials." Materials Science Forum. 258-263 (1997): 1425-1430. AbstractWebsite

High quantum efficiency, UV-enhanced monocrystalline zinc sulphide optical sensors for precise radiometric and spectroscopic measurements have been developed by spray deposition of heavy fluorinedoped tin oxide thin films with carrier concentration near 1021 cm-3 onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced silicon photodetectors as well as to new detectors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that was nearly 100% from 250 to 320 nm, and the typical sensitivity at 290 nm is 0.15 A/W. The sensors were insensitive to solar radiation in earth's conditions and can be used as solar blind photodetectors for precision UV-measurements under direct solar illumination, both terrestrial and space applications.

Malik, A., Martins R. "Metal oxide/silicon heterostructures: New solutions for different optoelectronic applications." Materials Research Society Symposium - Proceedings. Vol. 487. 1998. 375-380. Abstract

In this paper we report the success in fabricating FTO/Si surface-barrier photodiodes produced by spray pyrolysis deposition technique, under ambient conditions. Three types of photodetectors for low-voltage-bias operation were developed based on high-resistivity silicon: 1. X-Ray detectors with energy resolution of 16.5% at 661.5 keV (137Cs source), consisting of surface-barrier PIN photodiode with an active area of 50 mm2 operating at 5 V reverse bias, scintillator based on monocrystalline Bi4Ge3O12 and preamplifier (noise of 250 e- RMS.); 2. Fast-response surface-barrier FTO/n–n+ silicon epitaxial photodiodes, operating at 10 V bias with rise times of 2 ns at λ = 0.85 μm; 3. Radiation-resistant drift epitaxial surface-barrier PIN photodiodes for unbiased operating conditions, with an exponential impurity distribution in a 8 μm thick epitaxial layer. A built-in electrical field due to the carrier concentration distribution in the epitaxial layer provides a considerable improvement in the `critical fluence' value (3×1014 cm-2) for neutron irradiation.

Malik, A., Seco Fortunate Martins A. E. R. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications.

Malik, Alexander, Seco Ana Fortunato Elvira Martins Rodrigo. "Selective optical sensors from 0.25 to 1.1 μm based on metal oxide-semiconductor heterojunctions." Sensors and Actuators, A: Physical. 68 (1998): 333-337. AbstractWebsite

We present a set of high-efficiency optical sensors for the spectral range from 0.25 to 1.1 μm based on metal oxide-semiconductor heterostructures using different substrates: GaP, GaSe, AlxGa1-xAs, GaAs and Si. A set of several transparent conductive metal oxide films such as indium, tin and zinc oxides fabricated by the spray pyrolysis method and its doping procedure has been investigated. The results show that heavily doped indium and tin oxide films are preferable as the active transparent conductive electrode in heterojunction surface-barrier structures. The fabricated sensors exhibit several features such as process simplicity, high quantum efficiency, uniformity of sensitivity over the active area and a high response speed. Such sensors can be used for precision measurements in different scientific and technical applications.

Malik, A., Martins R. "Silicon active optical sensors: From functional photodetectors to smart sensors." Sensors and Actuators, A: Physical. 68 (1998): 359-364. AbstractWebsite

We have developed new types of functional and smart optical silicon sensors, based on ITO/multichannel insulator/silicon structures, which are able to execute electronic functions such as amplifying the photocurrent (without avalanche multiplication), transforming the input optical signal into a radio frequency output signal and transforming the analogue input optical signal to a digital output form, without external active electronic components. These new functional optical sensors allow a substantial simplification of the registration of optical signals as well as of the electronic scheme to be used. © 1998 Elsevier Science S.A. All rights reserved.

Malik, A., Nunes Martins R. R. "Cubic to hexagonal phase transition in spray deposited tin-doped indium oxide films." Materials Research Society Symposium - Proceedings. Vol. 481. 1998. 599-605. Abstract

This work's aim is to report for the first time the cubic to hexagonal phase transition in tin-doped In2O3 films with a Sn/In atomic ratio of 0.03, fabricated at low temperature and normal pressure from alcoholic solution of InCl3 and SnCl4. The performed X-ray diffraction measurements show a difference between crystallographic symmetry of thin (100 nm) and thick (400 nm) films prepared in the same conditions: the structure of thick films can be related to high pressure In2O3 hexagonal system with a preferred orientation of c-axis parallel to the substrate surface, while thin films present a cubic symmetry with columnar (400) grain orientation. Phase transition nature is connected with non-axial tensile deformation of indium oxide grid due to insertion of chlorine ions in the position of two diagonally opposite oxygen vacancies in In2O3 network.

Malik, A.a, Sêco Fortunato Martins A. c E. b. "Microcrystalline thin metal oxide films for optoelectronic applications." Journal of Non-Crystalline Solids. 227-230 (1998): 1092-1095. AbstractWebsite

We report the properties and optoelectronic applications of transparent and conductive indium and tin oxide films prepared by the spray pyrolysis method and doped with Sn or F, respectively. The film properties have been measured using X-ray diffraction, optical and electrical absorption. As examples of applications we produced a set of selective optical detectors for different spectral regions, covering the wavelength range from 0.25 to 1.1 μm, based on metal oxide-semiconductor heterostructures and using different substrates such as: GaP, GaSe, AlxGa1-xAs, GaAs and Si. The fabricated devices exhibit several features such as: production simplicity, high quantum efficiency, uniform sensitivity over the entire active area and a high response speed. Finally, we present a high quantum efficiency and solar blind monocrystalline zinc sulphide optical sensor fabricated by spray deposition as an alternative to the ultraviolet-enhanced SiC and GaN photodetectors and the performances of a solar cell. © 1998 Elsevier Science B.V. All rights reserved.

Malik, A.a, Sêco Fortunato Martins A. b E. a. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications. © 1998 Elsevier Science S.A. All rights reserved.

Malik, A.a, Sêco Fortunato Martins A. b E. c. "Selective optical sensors from 0.25 to 1.1 μm based on metal oxide-semiconductor heterojunctions." Sensors and Actuators, A: Physical. 68 (1998): 333-337. AbstractWebsite

We present a set of high-efficiency optical sensors for the spectral range from 0.25 to 1.1 μm based on metal oxide-semiconductor heterostructures using different substrates: GaP, GaSe, AlxGa1 - xAs, GaAs and Si. A set of several transparent conductive metal oxide films such as indium, tin and zinc oxides fabricated by the spray pyrolysis method and its doping procedure has been investigated. The results show that heavily doped indium and tin oxide films are preferable as the active transparent conductive electrode in heterojunction surface-barrier structures. The fabricated sensors exhibit several features such as process simplicity, high quantum efficiency, uniformity of sensitivity over the active area and a high response speed. Such sensors can be used for precision measurements in different scientific and technical applications. © 1998 Elsevier Science S.A. All rights reserved.

Malik, A.a, Sêco Fortunato Martins Shabashkevich Piroszenko A. a E. a. "A new high ultraviolet sensitivity FTO-GaP Schottky photodiode fabricated by spray pyrolysis." Semiconductor Science and Technology. 13 (1998): 102-107. AbstractWebsite

A new high quantum efficiency gallium phosphide Schottky photodiode has been developed by spray deposition of heavily doped tin oxide films on n-type epitaxial structures, as an alternative to the conventional Schottky photodiodes using a semitransparent gold electrode. It is shown that fluorine-doped tin oxide films are more effective as transparent electrodes than tin-doped indium oxide films. The proposed photodiodes have a typical responsivity near 0.33 A W-1 at 440 nm and an unbiased internal quantum efficiency close to 100%, in the range from 250 to 450 nm. The model used to calculate the internal quantum efficiency (based on the optical constants of tin oxide films and gallium phosphide epitaxial layers) is found to be in good agreement with the experimental results. The data show that the quantum efficiency is strongly dependent on the thickness of the transparent electrode, owing to optical interference effects. The noise equivalent power for 440 nm is 2.7 × 10-15 W Hz-1/2, which indicates that these photodiodes can be used for accurate measurements in the short-wavelength range, even in the presence of stronger infrared background radiation.

b Marques, A.C.a c, Santos Costa Dantas Duarte Gonçalves Martins Salgueiro Fortunato L. a M. N. "Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes." Scientific Reports. 5 (2015). AbstractWebsite

Electrochemically active bacteria (EAB) have the capability to transfer electrons to cell exterior, a feature that is currently explored for important applications in bioremediation and biotechnology fields. However, the number of isolated and characterized EAB species is still very limited regarding their abundance in nature. Colorimetric detection has emerged recently as an attractive mean for fast identification and characterization of analytes based on the use of electrochromic materials. In this work, WO 3 nanoparticles were synthesized by microwave assisted hydrothermal synthesis and used to impregnate non-treated regular office paper substrates. This allowed the production of a paper-based colorimetric sensor able to detect EAB in a simple, rapid, reliable, inexpensive and eco-friendly method. The developed platform was then tested with Geobacter sulfurreducens, as a proof of concept. G. sulfurreducens cells were detected at latent phase with an RGB ratio of 1.10 ± 0.04, and a response time of two hours.

Martins, R., Pereira Barquinha Ferreira Prabakaran Gonçalves Gonçalves Fortunato L. P. I. "Zinc oxide and related compounds: Order within the disorder." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 7217. 2009. Abstract

This paper discusses the effect of order and disorder on the electrical and optical performance of ionic oxide semiconductors based on zinc oxide. These materials are used as active thin films in electronic devices such as pn heterojunction solar cells and thin-film transistors. Considering the expected conduction mechanism in ordered and disordered semiconductors the role of the spherical symmetry of the s electron conduction bands will be analyzed and compared to covalent semiconductors. The obtained results show p-type c-Si/a-IZO/poly-ZGO solar cells exhibiting efficiencies above 14% in device areas of about 2.34 cm2. Amorphous oxide TFTs based on the Ga-Zn-Sn-0 system demonstrate superior performance than the polycrystalline TFTs based on ZnO, translated by ION/IOFF ratio exceeding 107, turn-on voltage below 1-2 V and saturation mobility above 25 cm2/Vs. Apart from that, preliminary data on p-type oxide TFT based on the Zn-Cu-O system will also be presented. © 2009 SPIE.

Martins, R.a, Fortunato Nunes Ferreira Marques Bender Katsarakis Cimalla Kiriakidis E. a P. a. "Zinc oxide as an ozone sensor." Journal of Applied Physics. 96 (2004): 1398-1408. AbstractWebsite

A study of intrinsic zinc oxide thin film as ozone sensor based on the ultraviolet (UV) photoreduction and subsequent ozone re oxidation of zinc oxide as a fully reversible process was presented. It was found that the film described were produced by spray pyrolysis, dc and rf magnetron sputtering. The dc resistivity of the films changed more than eight orders of magnitude when exposed to an UV dose of 4 mW/cm2. Analysis shows that the porous and textured zinc oxide films produced by spray pyrolysis at low substrate exhibit an excellent ac impedance response.

Martins, R., Ferreira Cabrita Águas Silva Fortunato I. A. H. "New steps to improve a-Si:H device stability by design of the interfaces." Advanced Engineering Materials. 3 (2001): 170-173. AbstractWebsite
n/a
Martins, R., Ferreira Fernandes Fortunato I. F. E. "Role of the deposition conditions on the properties presented by nanocrystallite silicon films produced by hot wire." Journal of Non-Crystalline Solids. 227-230 (1998): 901-905. AbstractWebsite

The aim of this work is to study the role of hydrogen dilution and filament temperature on the properties of nanocrystalline silicon thin films (undoped and doped) produced by the hot wire technique. These deposition parameters are correlated to the film's structure, composition and electro-optical properties with special emphasis on boron doped nanocrystalline silicon carbide reported here. © 1998 Elsevier Science B.V. All rights reserved.

Martins, R.a, Vieira Ferreira Fortunato Guimarães M. b I. a. "Transport properties of doped silicon oxycarbide microcrystalline films produced by spatial separation techniques." Solar Energy Materials and Solar Cells. 41-42 (1996): 493-517. AbstractWebsite

This paper presents results of the role of the oxygen partial pressure used during the deposition process on the transport properties exhibited by doped microcrystalline silicon oxycarbide films produced by a Two Consecutive Decomposition and Deposition Chamber system, where a spatial separation between the plasma and the growth regions is achieved. This paper also presents the interpretative models of the optoelectronic behaviour observed in these films (highly conductive and transparent with suitable properties for optoelectronic applications) as well as the interpretation of the growth process that leads to film's microcrystallization.

Martins, Rodrigo, Fortunato Elvira Bicho Ana Lavareda Guilherme. "Role of the lateral leakage current on amorphous silicon solar cells." Conference Record of the IEEE Photovoltaic Specialists Conference. Vol. 1. 1994. 587-590. Abstract

The aim of this work is to interpret the role of the lateral leakage current on the a-Si:H solar cell performances (J-V characteristics, responsivity and the apparent device degradation behaviour), under low illumination conditions.

Martins, R., Barquinha Pimentel Pereira Fortunato P. A. L. "Transport in high mobility amorphous wide band gap indium zinc oxide films." Physica Status Solidi (A) Applications and Materials Science. 202 (2005): R95-R97. AbstractWebsite

This paper discusses the electron transport in the n-type amorphous indium-zinc-oxygen system produced at room temperature by rf magnetron sputtering, under different oxygen partial pressures. The data show that the transport is not band tail limited, as it happens in conventional disordered semiconductors, but highly dependent on its ionicity, which explains the very high mobilities (≥ 60 cm 2 V -1 s -1) achieved. The room temperature dependence of the Hall mobility on the carrier concentration presents a reverse behaviour than the one observed in conventional crystalline/polycrystalline semiconductors, explained mainly by the presence of charged structural defects in excess of 4 × 10 10 cm -2 that scatter the electrons that pass through them. © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Martins, R. "Materials Science Forum: Preface." Materials Science Forum. 382 (2001): V. AbstractWebsite
n/a
Martins, R.a, Vieira Ferreira Fortunato M. b I. a. "Role of oxygen partial pressure on the properties of doped silicon oxycarbide microcrystalline layers produced by spatial separation techniques." Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. 13 (1995): 2199-2209. AbstractWebsite

The aim of this work is to present experimental data concerning the role of the oxygen partial pressure during the production process on the properties (structure, morphology, composition, and transport properties) exhibited by doped microcrystalline silicon oxycarbide films. The films were produced by a two consecutive decomposition and deposition chamber system, where a spatial separation between the plasma and the growth regions is achieved. The films produced by this technique are highly conductive and highly transparent with suitable properties for optoelectronic applications requiring wide band-gap and low-conductivity materials. © 1995, American Vacuum Society. All rights reserved.