Publications

Export 109 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Martins, R.a, Águas Ferreira Fortunato Lebib Cabarrocas Guimarães H. a I. a. "Polymorphous silicon films deposited at 27.12 MHz." Chemical Vapor Deposition. 9 (2003): 333-337. AbstractWebsite

This paper describes, for the first time, a method of producing polymorphous silicon (pm-Si:H) films by plasma-enhanced (PE) CVD, using an excitation frequency of 27.12 MHz. The aim is to produce, at high growth rates, nanostructured films that are more stable than the conventional amorphous or polymorphous silicon films grown by PECVD at 13.56 MHz. The processing data show that, at 27.12 MHz, the pm-Si:H films are produced close to the transition region from amorphous to microcrystalline silicon films, at a growth rate of about 0.3 nms-1, using pressures above 160 Pa. Apart from that, the analysis of the exodiffusion, spectroscopic ellipsometry (SE), and micro Raman data reveal that these films are more dense and compact than the polymorphous films grown at 13.56 MHz.

Martins, R., Chu Fortunato Conde Ferreira V. E. J. "Preface." Journal of Non-Crystalline Solids. 352 (2006): vii. AbstractWebsite
n/a
Martins, R.F.P.a, Ahnood Correia Pereira Barros Barquinha Costa Ferreira Nathan Fortunato A. b N. a. "Recyclable, flexible, low-power oxide electronics." Advanced Functional Materials. 23 (2013): 2153-2161. AbstractWebsite

The ability to process and dimensionally scale field-effect transistors with and on paper and to integrate them as a core component for low-power-consumption analog and digital circuits is demonstrated. Low-temperature-processed p- and n-channel integrated oxide thin-film transistors in the complementary metal oxide semiconductor (CMOS) inverter architecture are seamlessly layered on mechanically flexible, low-cost, recyclable paper substrates. The possibility of building these circuits using low-temperature processes opens the door to new applications ranging from smart labels and sensors on clothing and packaging to electronic displays printed on paper pages for use in newspapers, magazines, books, signs, and advertising billboards. Because the CMOS circuits reported constitute fundamental building blocks for analog and digital electronics, this development creates the potential to have flexible form factor computers seamlessly layered onto paper. The holistic approach of merging low-power circuitry with a recyclable substrate is an important step towards greener electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Martins, R., �?guas Ferreira Silva Cabrita Fortunato H. I. V. "Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films." Thin Solid Films. 383 (2001): 165-168. AbstractWebsite

The aim of this paper was to present results of the role of the d.c. grid bias on the silane plasma impedance and its I-V characteristics to grow undoped amorphous silicon (a-Si:H) films by plasma enhanced chemical vapour deposition (PECVD) in conditions where some nanoparticles can be formed in the growth region of the deposition process, under proper ion bombardment. The results achieved show that the performances of the films produced are dependent on the self bias voltage that can present photosensitivities of approximately 107 (two orders of magnitude larger than the one exhibited by films grown under conventional conditions) with density of states determined by the constant photocurrent method below 4×1015 cm-3. Apart from that, the films grown are less affected by light soaking than the conventional films.

Martins, R., Barquinha Pereira Ferreira Fortunato P. L. I. "Role of order and disorder in covalent semiconductors and ionic oxides used to produce thin film transistors." Applied Physics A: Materials Science and Processing. 89 (2007): 37-42. AbstractWebsite

This paper aims to discuss the effect of order and disorder on the electrical performances of covalent silicon semiconductors and ZnO based ionic oxide semiconductors used as active channel layers in thin film transistors. The effect of disorder on covalent semiconductors directly affects their electrical transport properties due to the asymmetric behaviour of sp states, while in ionic oxide semiconductors it is found that this effect is small due to the fact that angular disorder has no effect on the spherical symmetry of s states. To this we must add that the mobility of carriers in both systems is quite different, being also affected by electron-phonon interactions (weak in silicon and strong in ionic oxides leading to formation of polarons). Besides, the impurity doping effect and the presence of vacancies in disordered silicon and in ionic oxides behave differently, which will influence the thin film properties and so, the performances of the devices produced. © 2007 Springer-Verlag.

Martins, R.b, Barquinha Ferreira Pereira Goņalves Fortunato P. a I. a. "Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors." Journal of Applied Physics. 101 (2007). AbstractWebsite

The role of order and disorder on the electronic performances of n -type ionic oxides such as zinc oxide, gallium zinc oxide, and indium zinc oxide used as active (channel) or passive (drain/source) layers in thin film transistors (TFTs) processed at room temperature are discussed, taking as reference the known behavior observed in conventional covalent semiconductors such as silicon. The work performed shows that while in the oxide semiconductors the Fermi level can be pinned up within the conduction band, independent of the state of order, the same does not happen with silicon. Besides, in the oxide semiconductors the carrier mobility is not bandtail limited and so disorder does not affect so strongly the mobility as it happens in covalent semiconductors. The electrical properties of the oxide films (resistivity, carrier concentration, and mobility) are highly dependent on the oxygen vacancies (source of free carriers), which can be controlled by changing the oxygen partial pressure during the deposition process and/or by adding other metal ions to the matrix. In this case, we make the oxide matrix less sensitive to the presence of oxygen, widening the range of oxygen partial pressures that can be used and thus improving the process control of the film resistivity. The results obtained in fully transparent TFT using polycrystalline ZnO or amorphous indium zinc oxide (IZO) as channel layers and highly conductive poly/nanocrystalline ZGO films or amorphous IZO as drain/source layers show that both devices work in the enhancement mode, but the TFT with the highest electronic saturation mobility and on/off ratio 49.9 cm2 V s and 4.3× 108, respectively, are the ones in which the active and passive layers are amorphous. The ZnO TFT whose channel is based on polycrystalline ZnO, the mobility and on/off ratio are, respectively, 26 cm2 V s and 3× 106. This behavior is attributed to the fact that the electronic transport is governed by the s -like metal cation conduction bands, not significantly affected by any type of angular disorder promoted by the 2p O states related to the valence band, or small amounts of incorporated metal impurities that lead to a better control of vacancies and of the TFT off current. © 2007 American Institute of Physics.

Martins, R.a, Vieira Ferreira Fortunato M. b I. a. "Role of oxygen partial pressure on the properties of doped silicon oxycarbide microcrystalline layers produced by spatial separation techniques." Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. 13 (1995): 2199-2209. AbstractWebsite

The aim of this work is to present experimental data concerning the role of the oxygen partial pressure during the production process on the properties (structure, morphology, composition, and transport properties) exhibited by doped microcrystalline silicon oxycarbide films. The films were produced by a two consecutive decomposition and deposition chamber system, where a spatial separation between the plasma and the growth regions is achieved. The films produced by this technique are highly conductive and highly transparent with suitable properties for optoelectronic applications requiring wide band-gap and low-conductivity materials. © 1995, American Vacuum Society. All rights reserved.

Martins, R.a, Ferreira Gonçalves Nunes Fortunato Marvão Martins J. a C. a. "Role of soldering parameters on the electrical performances presented by Cu-Sn-Cu joints used in power diodes." Materials Science and Engineering A. 288 (2000): 275-279. AbstractWebsite

The effects of Sn thickness electrodeposited over Cu on the structural and morphological performance of the joints formed were investigated. The electrical stability of the joints formed was analyzed under extreme aggressive conditions. Results indicated that the proposed soldering technology greatly satisfied the demands concerning soldering specifications.

Martins, R., Ferreira Fernandes Fortunato I. F. E. "Role of the deposition conditions on the properties presented by nanocrystallite silicon films produced by hot wire." Journal of Non-Crystalline Solids. 227-230 (1998): 901-905. AbstractWebsite

The aim of this work is to study the role of hydrogen dilution and filament temperature on the properties of nanocrystalline silicon thin films (undoped and doped) produced by the hot wire technique. These deposition parameters are correlated to the film's structure, composition and electro-optical properties with special emphasis on boron doped nanocrystalline silicon carbide reported here. © 1998 Elsevier Science B.V. All rights reserved.

Martins, R., Maçarico Ferreira Fidalgo Fortunato A. I. J. "Role of the deposition parameters in the uniformity of films produced by the plasma-enhanced chemical vapour deposition technique." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 76 (1997): 259-272. AbstractWebsite

The objective of this work is to present an analytical model able to interpret the experimental dependence of the uniformity of films produced by the plasma-enhanced chemical vapour deposition technique on the deposition parameters (discharge pressure, gas flow temperature and rf power density). The model proposed is based on the Navier-Stokes equations applied to a gas flow considered to be quasi-incompressible and quasi-inviscous, whenever the Mach number is below 0·3. This condition leads to the establishment of the proper quasisteady-state gas flow equations, and the corresponding equations of energy and momentum balance ascribed to the mass profile of the species formed, under the presence of a low-rf-power plasma density, are able to predict the uniformity distribution of the film over the entire deposited substrate area.

Martins, R., Silva Ferreira Domingues Fortunato V. I. A. "Role of the gas temperature and power to gas flow ratio on powder and voids formation in films grown by PECVD technique." Vacuum. 56 (2000): 25-30. AbstractWebsite

This paper deals with the study of the role of gas temperature and of the ratio of r.f. power to gas flow on the particle’s formation in amorphous silicon films grown by plasma enhanced chemical vapour deposition technique, by monitoring the plasma impedance behaviour under different process conditions. The aim is to determine in which conditions the particles formed do not deteriorate the performances of the films grown or even can lead to an improvement of the properties of the films deposited. The results achieved show the existence of two main boundary regions (β- and θ-regions) separating the so-called α-regime (no powder formed) from the γ-regime (powder formed). Those regions are reached either by heating the gas, changing the gas pressure or using high power to gas flow ratios. In the β-region the probability of incorporating nanoparticles in the films is low and the films exhibit properties similar to those of the ones grown in the α-regime, with a low density of voids incorporated. In the θ-region small nanoparticles can be incorporated leading to films with density of states below 5×1015 cm-3, widened Urbach energies and photosensitivities about two orders of magnitude larger than that of conventional amorphous silicon grown in the α-regime. © 2000 Elsevier Science Ltd.

Martins, R., Silva Ferreira Domingues Fortunato V. I. A. "Role of the gas temperature and power to gas flow ratio on powder formation and properties of films grown by the PECVD technique." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 69 (2000): 272-277. AbstractWebsite

This paper deals with the study of the role of gas temperature and of the ratio of r.f. power to gas flow on the particle's formation in amorphous silicon films grown by the plasma enhanced chemical vapour deposition technique, by monitoring the plasma impedance behaviour under different process conditions. The results achieved show the existence of two main boundary regions separating the so-called α-regime (no powder formed) from the γ-regime (powder formed). Those regions are reached either by heating the gas, changing the gas pressure or using high power to gas flow ratios, corresponding to the establishment of a balance between the plasma resistance and the plasma reactance. In the β-region the probability to incorporate nanoparticles in the films is low and the films exhibit photosensitivity's of about 105 with density of states determined by the constant photocurrent method below 6×1015 cm-3 with Urbach energies below 50 meV. In the θ-region small nanoparticles can be incorporated leading to films with density of states below 3×1015 cm-3, with Urbach energies above 50 meV and photosensitivity's above 106, about two orders of magnitude larger than that of conventional amorphous silicon grown in the α-regime.

b Martins, R.a b, Fortunato E. a. "Role of the resistive layer on the performances of 2D a-Si:H thin film position sensitive detectors." Thin Solid Films. 337 (1999): 158-162. AbstractWebsite

The aim of this work is to present an analytical model which can to interpret the role of the collecting resistive layer on the static performances exhibited by 2D amorphous silicon hydrogenated p-i-n thin film position sensitive detectors. In addition, experimental results concerning the device linearity and spatial resolution are presented and checked against the predicted values of the analytical model proposed. © 1999 Elsevier Science S.A. All rights reserved.

Martins, R., Igreja Ferreira Marques Pimentel Gonçalves Fortunato R. I. A. "Room temperature dc and ac electrical behaviour of undoped ZnO films under UV light." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 118 (2005): 135-140. AbstractWebsite

This paper studies the dc and ac impedance behaviour of undoped ZnO thin films produced by spray pyrolysis and rf magnetron sputtering under UV light illumination, at room temperature, emphasising the role that the crystallite size, structure, surface morphology and the state of surface have on the electrical responsivities obtained. The results achieved show that the sputtered films with crystal sizes of about 4 nm exhibit dc electrical UV responsivities of 108. On the other hand, the spray pyrolysis films exhibit the lowest dc responsivities, due the high crystal sizes and state of surface contamination, to which very good capacitance responses were obtained, mainly due to the degree of porosity exhibit by these films when produced at low temperatures. Based on that, a two-phase electrical model is proposed to explain the set of behaviours observed. © 2005 Elsevier B.V. All rights reserved.

Martins, R., Barquinha Pereira Correia Gonçalves Ferreira Fortunato P. L. N. "Selective floating gate non-volatile paper memory transistor." Physica Status Solidi - Rapid Research Letters. 3 (2009): 308-310. AbstractWebsite

Here we report the performance of a selective floating gate (V GS) n-type non-volatile memory paper field-effect transistor. The paper dielectric exhibits a spontaneous polarization of about 1 mCm-2 and GIZO and IZO amorphous oxides are used respectively as the channel and the gate layers. The drain and source regions are based in continuous conductive thin films that promote the integration of fibres coated with the active semiconductor. The floating memory transistor writes, reads and erases the stored information with retention times above 14500 h, and is selective (for VGS > 5 ± 0.1 V). That is, to erase stored information a symmetric pulse to the one used to write must be utilized, allowing to store in the same space different information. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Malik, A.a, Sêco Fortunato Martins A. b E. c. "Selective optical sensors from 0.25 to 1.1 μm based on metal oxide-semiconductor heterojunctions." Sensors and Actuators, A: Physical. 68 (1998): 333-337. AbstractWebsite

We present a set of high-efficiency optical sensors for the spectral range from 0.25 to 1.1 μm based on metal oxide-semiconductor heterostructures using different substrates: GaP, GaSe, AlxGa1 - xAs, GaAs and Si. A set of several transparent conductive metal oxide films such as indium, tin and zinc oxides fabricated by the spray pyrolysis method and its doping procedure has been investigated. The results show that heavily doped indium and tin oxide films are preferable as the active transparent conductive electrode in heterojunction surface-barrier structures. The fabricated sensors exhibit several features such as process simplicity, high quantum efficiency, uniformity of sensitivity over the active area and a high response speed. Such sensors can be used for precision measurements in different scientific and technical applications. © 1998 Elsevier Science S.A. All rights reserved.

Malik, Alexander, Seco Ana Fortunato Elvira Martins Rodrigo. "Selective optical sensors from 0.25 to 1.1 μm based on metal oxide-semiconductor heterojunctions." Sensors and Actuators, A: Physical. 68 (1998): 333-337. AbstractWebsite

We present a set of high-efficiency optical sensors for the spectral range from 0.25 to 1.1 μm based on metal oxide-semiconductor heterostructures using different substrates: GaP, GaSe, AlxGa1-xAs, GaAs and Si. A set of several transparent conductive metal oxide films such as indium, tin and zinc oxides fabricated by the spray pyrolysis method and its doping procedure has been investigated. The results show that heavily doped indium and tin oxide films are preferable as the active transparent conductive electrode in heterojunction surface-barrier structures. The fabricated sensors exhibit several features such as process simplicity, high quantum efficiency, uniformity of sensitivity over the active area and a high response speed. Such sensors can be used for precision measurements in different scientific and technical applications.

Malik, A., Martins R. "Silicon active optical sensors: From functional photodetectors to smart sensors." Sensors and Actuators, A: Physical. 68 (1998): 359-364. AbstractWebsite

We have developed new types of functional and smart optical silicon sensors, based on ITO/multichannel insulator/silicon structures, which are able to execute electronic functions such as amplifying the photocurrent (without avalanche multiplication), transforming the input optical signal into a radio frequency output signal and transforming the analogue input optical signal to a digital output form, without external active electronic components. These new functional optical sensors allow a substantial simplification of the registration of optical signals as well as of the electronic scheme to be used. © 1998 Elsevier Science S.A. All rights reserved.

Malik, Alexander, Martins Rodrigo. "Silicon active optical sensors: from functional photodetectors to smart sensors." Sensors and Actuators, A: Physical. 68 (1998): 359-364. AbstractWebsite

We have developed new types of functional and smart optical silicon sensors, based on ITO/multichannel insulator/silicon structures, which are able to execute electronic functions such as amplifying the photocurrent (without avalanche multiplication), transforming the input optical signal into a radio frequency output signal and transforming the analogue input optical signal to a digital output form, without external active electronic components. These new functional optical sensors allow as substantial simplification of the registration of optical signals as well as of the electronic scheme to be used.

Martins, R., Águas Silva Ferreira Cabrita Fortunato H. V. I. "Silicon films produced by PECVD under powder formation conditions." Materials Science Forum. 382 (2001): 21-28. AbstractWebsite

The process conditions of growing thin silicon films by plasma enhanced chemical vapour deposition (PECVD) were presented. The plasma impedance was found to monitor the powders in the PECVD systems and good quality silicon films were grown close to the plasma regime where the powders were formed. The silicon films exhibited properties which were interpreted based on a two-phase model where silicon nanostructures were embedded in a disordered network.

Martins, R., Águas Silva Ferreira Cabrita Fortunato H. V. I. "Silicon nanostructure thin film materials." Vacuum. 64 (2002): 219-226. AbstractWebsite

This paper deals with the growth process of nanostructured silicon films produced by chemical vapour deposition technique, at or close to the γ-regime where powders are formed. There, besides the set of chemical reactions undertaken by the species decomposed on the growth surface, the importance of the physics of the plasma in managing the powders and on the final film performances will be shown. To identify the plasma region where Si nanoaggregates are formed, we propose the use of a new parameter that translates the energy coupling of the rf power to the species of the gas flow, per pressure range of the process. By doing so we could establish an excellent correlation between this ratio and the plasma parameters such as peak to peak rf voltage and plasma impedance, or with the films defect density and their transport properties. Apart from that, we also show that high compact Si nanoclusters could be grown under moderate ion bombardment. Finally, to allow the growth at high rates of controlled silicon nanostructures, a three cycling process based on hot wire chemical vapour deposition and plasma assisting the hot wire technique will be discussed. © 2002 Elsevier Science Ltd. All rights reserved.

Martins, R., Fortunato E. "Static and dynamic resolution of 1D thin film position sensitive detector." Journal of Non-Crystalline Solids. 198-200 (1996): 1202-1206. AbstractWebsite

The aim of this work is to present a model to interpret the static and the dynamic detection and resolution limits of 1D thin film position sensitive detectors based on p-i-n a-Si:H devices. The model can determine the device characteristics that influence the spatial limits and the response time of the device.

Martins, R., Fortunato E. "Static behaviour of thin-film position-sensitive detectors based on p-i-n a-Si:H devices." Sensors and Actuators: A. Physical. 51 (1995): 143-151. AbstractWebsite

The aim of this work is to provide the basis for the interpretation of the lateral photoeffect in p-i-n a-Si:H one-dimensional thin-film position-sensitive detectors (1D TFPSDs) under steady state, through an analytical model. The experimental data recorded in 1D TFPSD devices with different characteristics are compared with the predicted curves and the obtained correlations are discussed. © 1996.

Martins, R., Maçarico Vieira Ferreira Fortunato A. M. I. "Structure, composition and electro-optical properties of n-type amorphous and microcrystalline silicon thin films." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 76 (1997): 249-258. AbstractWebsite

This paper deals with the structure, composition and electro-optical characteristics of n-type amorphous and microcrystalline silicon thin films produced by plasma-enhanced chemical vapour deposition in a hydrogenhelium mixture. In addition, special emphasis is given to the role that hydrogen incorporation plays in the film's properties and in the characteristics of n-type microcrystalline films presenting simultaneously optical gaps of about 2·3 eV (controlled by the hydrogen content in the film), a dark conductivity of 6-5S cm-1 and a Hall mobility of about 0·86 cm2 V-1 s-1, the highest combined values for n-type microcrystalline silicon films, as far as we know.

Meng, L.-j., Maçarico Martins A. R. "Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering." Vacuum. 46 (1995): 673-680. AbstractWebsite

Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as deposited film is about 1.3 × 10-1 gW*cm and decreases down to 6.9 × 10-3 Ω*cm as the annealing temperature is increased up to 500 °C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping. © 1995.