Publications

Export 52 results:
Sort by: [ Author  (Desc)] Title Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Assunção, V.a, Fortunato Marques Águas Ferreira Costa Martins E. a A. a. "Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature." Thin Solid Films. 427 (2003): 401-405. AbstractWebsite

Highly conducting and transparent gallium doped zinc oxide thin films have been deposited at high growth rates by r.f. magnetron sputtering at room temperature on inexpensive soda lime glass substrates. The argon sputtering pressure was varied between 0.15 and 2.1 Pa. The lowest resistivity was 2.6 × 10-4 Ω cm (sheet resistance ≈6 Ω/sq. for a thickness ≈600 nm) and was obtained at an argon sputtering pressure of 0.15 Pa and a r.f. power of 175 W. The films present an overall transmittance in the visible spectra of approximately 90%. The increase on the resistivity for higher sputtering pressures is due to a decrease of both, mobility and carrier concentration, and is associated to a change on the surface morphology. The low resistivity, accomplished with a high growth rate (290 Å/min) and with a room temperature deposition enables these films deposition onto polymeric substrates for flexible optoelectronic devices. © 2002 Elsevier Science B.V. All rights reserved.

Assunção, V., Fortunato Marques Gonçalves Ferreira Águas Martins E. A. A. "New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering." Thin Solid Films. 442 (2003): 102-106. AbstractWebsite

Gallium-doped zinc oxide films were prepared by r.f. magnetron sputtering at room temperature as a function of the substrate-target distance. The best results were obtained for a distance of 10 cm, where a resistivity as low as 2. 7 × 10-4 Ω cm, a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3 × 1021 cm-3 were achieved. The films are polycrystalline presenting a strong crystallographic c-axis orientation (002) perpendicular to the substrate. The films present an overall transmittance in the visible part of the spectra of approximately 85%, on average. © 2003 Elsevier B.V. All rights reserved.

Araújo, A., Mendes Mateus Vicente Nunes Calmeiro Fortunato Águas Martins M. J. T. "Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealing." Journal of Physical Chemistry C. 120 (2016): 18235-18242. AbstractWebsite

Metal nanoparticles are of great interest for light trapping in photovoltaics. They are usually incorporated in the rear electrode of solar cells, providing strong light scattering at their surface plasmon resonances. In most cases, the nanoparticles are self-assembled by solid-state dewetting over a transparent conductive oxide (TCO) layer incorporated in the cell's rear electrode. Up to now, this process has been optimized mainly by tuning the thermal annealing parameters responsible for dewetting, or the thickness of the precursor metallic layer; but little attention has been paid to the influence of the underlying TCO layer properties on the morphology of the nanoparticles formed, which is the focus of the present article. This work investigates Ag nanoparticles structures produced on distinct surfaces by a simple, fast and highly reproducible method employing rapid thermal annealing. The results indicate that both the thermal conductivity and surface roughness of the TCO layer play a determinant role on the morphology of the nanostructures formed. This is of particular relevance, since we show in the study performed that the parasitic absorption of these Ag nanostructures is reduced, while the scattering is enhanced when the Ag nanostructures are formed on TCO layers with the highest conductivity and the lowest surface roughness (∼1 nm). These results unveil novel possibilities for the improvement of plasmonic nanostructures fabricated by thermal dewetting, via the careful adjustment of the physical properties of the underlying surface. © 2016 American Chemical Society.

Araújo, A.a, Barros Mateus Gaspar Neves Vicente Filonovich Barquinha Fortunato Ferraria Botelho Do Rego Bicho Águas Martins R. a T. a. "Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells." Science and Technology of Advanced Materials. 14 (2013). AbstractWebsite

We report the effect of a disperse carbon interlayer between the n-a-Si:H layer and an aluminium zinc oxide (AZO) back contact on the performance of amorphous silicon solar cells. Carbon was incorporated to the AZO film as revealed by x-ray photoelectron spectroscopy and energy-dispersive x-ray analysis. Solar cells fabricated on glass substrates using AZO in the back contact performed better when a disperse carbon interlayer was present in their structure. They exhibited an initial efficiency of 11%, open-circuit voltage Voc = 1.6 V, short-circuit current JSC = 11 mA cm -2 and a filling factor of 63%, that is, a 10% increase in the J SC and 20% increase in the efficiency compared to a standard solar cell. © 2013 National Institute for Materials Science.

and Ao Liu, Guoxia Liu, Huihui Zhu Byoungchul Shin Elvira Fortunato Rodrigo Martins Fukai Shan. "Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage, high-performance transistors." Journal of Materials Chemistry C. 4 (2016): 4478-4484. AbstractWebsite

In this study, amorphous indium-tungsten oxide (IWO) semiconductor thin films were prepared by an eco-friendly spin-coating process using ethanol and water as solvents. The electrical properties of IWO thin-film transistors (TFTs), together with the structural and morphological characteristics of IWO thin films, were systematically investigated as functions of tungsten concentration and annealing temperature. The optimized IWO channel layer was then integrated on an aqueous aluminum oxide (AlOx) gate dielectric. It is observed that the solution-processed IWO/AlOx TFT presents high stability and improved characteristics, such as an on/off current ratio of 5 × 107, a field-effect mobility of 15.3 cm2 V-1 s-1, a small subthreshold slope of 68 mV dec-1, and a threshold voltage shift of 0.15 V under bias stress for 2 h. The IWO/AlOx TFT could be operated at a low voltage of 2 V, which was 15 times lower than that of conventional SiO2-based devices. The solution-processed IWO thin films synthesized in a green route would be promising candidates for large-area and high-performance low-cost devices. © The Royal Society of Chemistry 2016.

and Ao Liu, Guoxia Liu, Huihui Zhu Byoungchul Shin Elvira Fortunato Rodrigo Martins Fukai Shan. "High-mobility p-type NiOx thin-film transistors processed at low temperatures with Al2O3 high-k dielectric." Journal of Materials Chemistry C. 4 (2016): 9438-9444. AbstractWebsite

Although there are a few research studies on solution-processed p-channel oxide thin-film transistors (TFTs), the strict fabrication conditions and the poor electrical properties have limited their applications in low-power complementary metal oxide semiconductor (CMOS) electronics. Here, the application of the polyol reduction method for processing p-type CuxO and NiOx channel layers and their implementation in TFT devices are reported. The optimized CuxO and NiOx TFTs were achieved at low annealing temperatures (∼300 °C) and exhibited decent electrical properties. Encouraged by the inspiring results obtained on SiO2/Si substrates, the TFT performance was further optimized by device engineering, employing high-k AlOx as the gate dielectric. The fully solution-processed NiOx/AlOx TFT could be operated at a low voltage of 3.5 V and exhibits a high hole mobility of around 25 cm2 V-1 s-1. Our work demonstrates the ability to grow high-quality p-type oxide films and devices via the polyol reduction method over large area substrates while at the same time it provides guidelines for further p-type oxide material and device improvements. © The Royal Society of Chemistry 2016.

b Amorín, H.a, Martins Kholkin Costa R. S. a A. "Structural and electrical characterization of ferroelectric SrBi 2Nb2O9 single crystals grown by high-temperature self-flux solution." Ferroelectrics. Vol. 320. 2005. 43-50. Abstract

High-quality SrBi2Nb2O9 (SBN) single crystals were grown from a melt using a high-temperature self-flux solution method and Bi2O3 added with B2O3 as a flux. A suitable thermal profile involving slow cooling rates allowed growing large and translucent SBN crystals exhibiting platelet morphology with typical size ∼5 × 5 mm2 and thickness approximately 400 μm. X-ray diffraction revealed a dominant (001)-orientation of the major face of the platelet crystals and edges oriented parallel to the [110] directions. The dielectric properties were evaluated along the ab-plane and in the c-axis direction. The ferro-paraelectric phase transition was observed at TC = 440°C with Curie-Weiss relationship above TC. The anisotropy of dielectric permittivity, i.e., the ratio between permittivity in the ab-plane and along c-axis was about 10 at TC-The obtained results are used to discuss the observed correlations between anisotropy, crystalline orientation, and electrical properties.

deZeaBermudez Alves, R.D.a, Rodrigues Andrade Fernandes Pinto Pereira Pawlicka Martins Fortunato Silva L. C. a J. "GelatinnZn(CF3SO3)2 polymer electrolytes for electrochromic devices." Electroanalysis. 25 (2013): 1483-1490. AbstractWebsite

The present work is focused on gelatin-based electrolytes doped with a range of concentration of zinc triflate (Zn(CF3SO3)2). The transparent-thin-film samples have been represented by the notation GelatinnZn(CF3SO3)2, where n represents the zinc triflate salt concentration in the electrolyte membranes from 0.00 wt% to 10.93 wt% The samples have been characterized by conductivity measurements, thermal analysis, cyclic voltammetry, X-ray diffraction (XRD), polarized optical microscopy (POM) and scanning electron microscopy (SEM). The gelatin-based electrolytes were also tested as ionic conductors in electrochromic devices with the glass/ITO/WO3/gelatin-based electrolyte/CeO2-TiO2/ITO/glass configuration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Alves, E.a, Franco Barradas Munnik Monteiro Peres Wang Martins Fortunato N. a N. P. "Structural and optical properties of nitrogen doped ZnO films." Vacuum. 83 (2009): 1274-1278. AbstractWebsite

Zinc oxide is getting an enormous attention due to its potential applications in a variety of fields such as optoelectronics, spintronics and sensors. The renewed interest in this wide band gap oxide semiconductor relies on its direct high energy gap (Eg ∼ 3.437 eV at low temperatures) and large exciton binding energy. However to reach the stage of device production the difficulty to produce in a reproducible way p-type doping must be overcome. In this study we discuss the structural and optical properties of ZnO films doped with nitrogen, a potential p-type dopant. The films were deposited by magnetron sputtering using different conditions and substrates. The composition and structural properties of the films were studied combining X-ray diffraction (XRD), Rutherford backscattering (RBS), and heavy ion elastic recoil detection analysis (HI-ERDA). The results show an improvement of the quality of the films deposited on sapphire with increasing radio-frequency (RF) power with a preferentially growth along the c-axis. The ERDA analysis reveals the presence of H in the films and a homogeneous composition over the entire thickness. The photoluminescence of annealed samples evidences an improvement on the optical quality as identified by the well structured near band edge recombination. © 2009 Elsevier Ltd. All rights reserved.

Alves, R.D.a, Rodrigues Andrade Pawlicka Pereira Martins Fortunato Silva L. C. a J. "Study and characterization of a novel polymer electrolyte based on agar doped with magnesium triflate." Molecular Crystals and Liquid Crystals. 570 (2013): 1-11. AbstractWebsite

In the present work one host natural matrix - agar - has been doped with magnesium triflate (Mg(CF3SO3)2) with the goal of developing electrolytes for the fabrication of solid-state devices. The resulting samples have been represented by the notation Agar nMg(CF3SO3)2, where n represents the percentage of the magnesium triflate salt proportion in the electrolyte samples. The samples investigated, with n between 0.00% and 37.56%, have been obtained as transparent and thin films. The samples have been characterized by conductivity measurements, thermal analysis, cyclic voltammetry, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The agar-based electrolytes were also tested as ionic conductor in an electrochromic device with the following configuration: glass/indium tin oxide (ITO)/WO 3/agar-based electrolyte/CeO2-TiO2/ITO/glass. © 2013 Copyright Taylor and Francis Group, LLC.

c Almeida, P.L.a, Godinho Cidade Nunes Marques Martins Fortunato Figueirinhas M. H. a M. "Composite systems for flexible display applications from cellulose derivatives." Synthetic Metals. 127 (2002): 111-114. AbstractWebsite

In this work, we study the electro-optical behaviour of cellulose/liquid crystal-based composite systems, in particular the influence of the flexible substrates and its conductive layers in the electro-optical behaviour of these kind of cells. Four cells were made using, respectively, two different substrates (a flexible polymer (poly(ethylene terephthalate) (PET)) and a soda lime glass) and two different conductive layers (indium tin oxide (ITO) and aluminium zinc oxide (AZO)). The conductive layer (AZO) was deposited in both, flexible and rigid substrates, for the same conditions, and the same substrates coated with ITO are commercially available. The cells were prepared from solid films of hydroxypropylcellulose (HPC) (30 μm thick) cross linked with 1,4-diisocyanatobutane (BDI) (7% w/w) and the nematic liquid crystal E7 (Merck, UK). The four different substrates were electrically and morphologically characterised. We have analysed all samples by light transmission and determined the maximum transmission, contrast and Von. We show a comparison of the results obtained for both flexible and rigid cells and discuss them in terms of the proposed working mechanism for these systems. © 2002 Elsevier Science B.V. All rights reserved.

Alexa, A.a, Tigau Alexandru Pimentel Branquinho Salgueiro Calmeiro Martins Fortunato Musat N. b P. a. "Morphological and optical characterization of transparent thin films obtained at low temperature using ZnO nanoparticles." Journal of Optoelectronics and Advanced Materials. 17 (2015): 1288-1295. AbstractWebsite

Transparent metal oxides thin films are a class of inorganic conductors and semiconductors with significant importance for use in portable electronics, displays, flexible electronics, multi-functional windows and solar cells. Due to the recent development of transparent and flexible electronics, there is a growing interest in depositing metal-oxide thin-film on plastic substrates that can offer flexibility, lighter weight, and potentially lead to cheaper manufacturing by allowing printing and rollto- roll processing. The plastic substrates, however, limit device processing to below 200oC. In this context, the deposition of high-performance semiconductor thin films from dispersions of pre-prepared oxide nanoparticles at temperatures below 200oC represents a potential key route. This paper reports on the preparation of ZnO transparent thin films using solutionprocessed nanoparticles (NPs) precipitated from zinc acetate alcoholic solution with potassium hydroxide. The nanoparticles size distribution, microstructure and crystallinity were measured by dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The thin films were deposited by spin-coating onto soda lima glass substrate, using a dispersion of 1wt% ZnO NPs. The morphology of the films annealed at 120 and 180oC, observed by atomic force microscopy and cross-section scanning electron microscopy, shows columnar grains with diameter ranging between 20 and 70 nm, depending on the conditions of depositions. Optical measurements indicated high transparency, between 85 and 94 %, in the visible range, a direct nature of band-to-band transitions and band gap values between 3,22 and 3,32 eV. The refractive index and extinction coefficient have been calculated from optical transmittance and reflectance spectra.

Alendouro, M.S.J.G.a, Monteiro Figueiredo Martins Silva Ferro Fernandas R. C. C. a. "Microstructural characterization and properties of a glass and a glassceramic made from municipal incinerator bottom ash." Materials Science Forum. 455-456 (2004): 827-830. AbstractWebsite

A glass was made using bottom ash produced by a Portuguese municipal solid waste (MSW) incinerator. The bottom ash was the single batch material used in the formation of the glass, which was obtained through a conventional melt-quenching method. The glass was then converted to glass-ceramic for further recycling to construction materials. After submitting the glass samples to several heat treatments, between 820 and 1050°C and during different times, it was verified that the optimum heat treatment schedule for the ceramization of the glass was at 1000°C for 10h, as confirmed by microstructural observation and by X-ray diffraction. The major crystalline phases precipitated in the glass-ceramic were wollastonite (CaSiO3) and diopside (Ca(Mg,Al)(Si,Al)2O6). Microstructural analysis of the glass-ceramic revealed that the crystalline phases were present as dendrites and fiber-like structures that were homogeneously distributed in the material. The glassceramic showed good mechanical properties with a hardness of 5.6 MPa and a bending strength of 101 MPa. This material had a density of 2.8 gcm-3 and a thermal expansion coefficient of 9.10-6°C-1. The glass and the glass-ceramic showed an excellent chemical stability against leaching in acidic solution and in alkaline solution. In summary, both the glass and the glass-ceramic have good chemical and mechanical properties and can, therefore, be applied as construction materials.

Albarran, T., Lopes Cabeça Martins Mourão L. J. R. "Preliminary budget methodology for reverse engineering applications using laser scanning." Proceedings of the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping: Virtual and Rapid Manufacturing Advanced Research Virtual and Rapid Prototyping. 2007. 231-235. Abstract

The driving force behind the work herein presented is the importance of budgeting in a competitive market. The problem at hands is the creation of a budgeting methodology for reverse engineering applications, involving laser scanning, that has the ability to generate budgets for different customer accuracy requirements and for parts of different morphologic characteristics, such as: shape, dimension and/or detail complexity. A breakup approach was used to implement the methodology: the reverse engineering process was broken in nine basic identified steps and elementary sources of cost were defined at the different reverse engineering stages as well. Particular budgeting methodologies for each step of the process were created. The obtained results so far point to the possibility of creating a complete budgeting system based on the proposed methodology. © 2008 Taylor & Francis Group.

Á
Águas, H., Martins Fortunato R. E. "Plasma diagnostics of a PECVD system using different R.F. electrode configurations." Vacuum. 56 (2000): 31-37. AbstractWebsite

This work aims to study the role of the r.f. electrode configuration on the plasma characteristics of a PECVD asymmetric reactor. The configurations used are the usual diode configuration, the triode configuration and a new configuration that we named short-circuited grid electrode (SGE). The plasma generated was characterized with the use of a Langmuir probe and an impedance probe. We demonstrate that the plasma parameters are highly dependent on the reactor geometry. The results achieved show that by changing the r.f. electrode configuration the DC self-bias varies from about 100 to close to 0 V. This variation causes changes in the ion bombardment of the reactor surfaces, which can affect the growing of the films deposited. We also demonstrate that for the SGE configuration the area seen by the plasma does not correspond to the exposed physical area of the electrode, and we suggest a model to explain this phenomenon.

Águas, H., Pereira Raniero Fortunato Martins L. L. E. "Effect of the load resistance in the linearity and sensitivity of MIS position sensitive detectors." Materials Research Society Symposium Proceedings. Vol. 862. 2005. 691-696. Abstract

It is experimentally known that the linearity and sensitivity of the position sensitive detectors (PSD) are dependent on the resistance of the collecting layer and of the load resistance, mainly if the detection is based on the measurement of the photo-lateral voltage. To determine the value of the load resistance to be used in metal - insulator - semiconductor (MIS) PSDs structures that lead to the maximum value of sensitivity and linearity, we propose an electrical model through which it is able to simulate the proper sensor response and how the load resistance influence the results obtained. This model is valid for PSDs where the resistance of the collecting resistive layer is quite low (≤ 500 Ω), leading to a low output impedance. Under these conditions we conclude that the value of the load resistance should be of about 1 kΩ in order to achieve a good compromise between the linearity and the sensitivity of the PSD. This result is in agreement with the set of experiments performed. © 2005 Materials Research Society.

Águas, H.M.B., Fortunato Cabrita Silva Tonello Martins E. M. C. A. "Correlation between surface/interface states and the performance of MIS structures." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A1211-A1216. Abstract

In order to understand the kinetics of formation of interface/surface states and its correlation on the final device performance, a preliminary study was performed on MIS structures, before and after surface oxidation/passivation, using different oxidation techniques and oxides: thermal (in air), chemical (in H2O2) and oxygen plasma. The devices used in this work are based on a glass/Cr/a-Si:H(n+)/a-Si:H(i)/SiOx/Pd structures, where the amorphous silicon intrinsic layer (i a-Si:H) with a photosensitivity of 107 was deposited by a modified plasma enhanced chemical vapour deposition (PECVD) triode system. The electrical properties of a-Si:H MIS structures were investigated by measuring their diode current-voltage characteristics in the dark and under illumination as well as the spectral response, as a function of the various oxidation techniques. Infrared spectroscopy and spectroscopic ellipsometry were used as a complementary tool to characterise the oxidised surface.

A
Aguas, H., Pereira Costa Raniero Fortunato Martins L. D. L. "Role of the oxide layer on the performances of a-Si:H schottky structures applied to PDS fabrication." Materials Research Society Symposium Proceedings. Vol. 910. 2007. 415-420. Abstract

In this work we present results of studies performed on Schottky and metal-insulator-semiconductor (MIS) position sensitive detectors (PSD) structures: substrate (glass)/ Cr (300 nm) / a-Si:H [n] (37 nm) / a-Si:H [i] (600 nm) / SiO2 (1.5 nm - for the MIS) / Au (7 nm). The effect of the interfacial oxide layer between Au and a-Si:H, for the MIS structures, was studied and compared with the Schottky, in order to determine how beneficial it could be for device performances and time degradation. For doing so, the Au thickness of 70Å was deposited by thermal evaporation on an oxide free (Schottky) and oxidized (≈20Å) (MIS) a-Si:H surfaces. These structures were characterized by SIMS, RBS, SEM and AFM in order to correlate the obtained diffusion profile of Au at the interface and the topography with the presence of the oxide at the interface. The results show that the Au inter-diffuses very easily in the oxide free a-Si:H surface, even at room temperature, degrading the devices performance. On the other hand, the MIS structures, with their interfacial oxide present no structural changes after annealing and the PSD produced are stable. We believe that this effect is associated with the barrier effect of the interfacial oxide that prevents the Au diffusion. The optimized 1D MIS sensors are stable and exhibit a linearity error as low as 0.8 % and sensitivities of 33 mV/cm for a 5 mW spot beam intensity at a wavelength of 532 nm, while the Schottky sensors showed a time degradation of their characteristics. © 2006 Materials Research Society.

Á
Águas, H., Raniero Pereira Fortunato Martins L. L. E. "Effect of the discharge frequency and impedance on the structural properties of polymorphous silicon." Thin Solid Films. 451-452 (2004): 264-268. AbstractWebsite

This work presents a study performed on the deposition of pm-Si:H by plasma enhanced chemical vapor deposition using excitation frequencies of 13.56 and 27.12 MHz, where the interest of increasing the excitation frequency relies on higher plasma dissociation and reduced energy of ion bombardment, thus allowing the deposition of superior grade material at higher growth rates. The plasma impedance, which allows the monitoring of particle formation in the plasma, was correlated to the film properties, characterized by spectroscopic ellipsometry and hydrogen exodiffusion experiments. The set of data obtained show that by using the 27.12-MHz excitation frequency the hydrogen dilution and the r.f. power density needed to produce pm-Si:H can be reduced. Growth rates above 3.1 Å/s were obtained, the films being more dense and chemically more stable than those obtained with the standard 13.56 MHz. © 2003 Elsevier B.V. All rights reserved.

Águas, H.a, Nunes Fortunato Gordo Maneira Martins Y. b E. a. "Correlation between a-Si:H surface oxidation process and the performance of MIS structures." Thin Solid Films. 383 (2001): 185-188. AbstractWebsite

In order to correlate the MIS devices performance with different surface oxidation methods, AFM, spectroscopic ellipsometry and infrared spectroscopy measurements were performed in a-Si:H films, before and after surface oxidation, using different oxidation techniques and oxides: thermal dry (in air), wet (in H2O2) and by oxygen plasma, while MIS (metal-insulator-semiconductor) devices were characterized by I-V curves, under dark and AM1.5 illumination conditions. The a-Si:H films were grown by the PECVD technique, in a modified triode configuration reactor to allow a precise control of the ion bombardment during the film deposition. We found that the growth of a thin layer of oxide by chemical processes on the top of the a-Si:H surface can cause changes on the surface morphology that are reflected in the electrical behaviour of the devices. The oxygen plasma treatment, cause the rearrangement of the surface atoms leading to a change of their morphology and to the improvement of the electrical properties of the surface for a MIS applications.

Águas, H.a, Popovici Pereiraa Conde Branford Cohen Fortunato Martins N. b L. "Spectroscopic ellipsometry study of Co-doped TiO 2 films." Physica Status Solidi (A) Applications and Materials Science. 205 (2008): 880-883. AbstractWebsite

Co-doped TiO 2 films were characterized by spectroscopic ellipsometry to determine their thickness, deposition rate and optical properties as function of substance temperature and background gas composition. To fit the data we used a combination of a single Tauc-Lorentz oscillator with the Drude free electron model to take in account the free electrons present in the film. The Co doping and addition of H 2 to the gas phase during film growth cause the formation of a titanium oxide which containsfree electrons that absorb the energy of the red part of the spectrum, causing k to increase. The n of the film at 1.5 eV is about 2.3 eV. The fittings also show that the n of films decreases and k increase at the surface. This can be related to a segregation of Co to the surface, which in some cases, of high substrate temperature and high H 2 flow during deposition, can lead to and even higher concentration of free electrons at the surface. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

Águas, H.a, Raniero Pereira Viana Fortunato Martins L. a L. a. "Role of the rf frequency on the structure and composition of polymorphous silicon films." Journal of Non-Crystalline Solids. 338-340 (2004): 183-187. AbstractWebsite

In this work we present results of structural composition and morphological characteristics of polymorphous silicon (pm-Si:H) films deposited by PECVD at 13.56 and 27.12 MHz. In addition, the role of the excitation frequency on the growth rate will be also analyzed. The results show that by using the 27.12 MHz excitation frequency the hydrogen dilution in the plasma needed to produce pm-Si:H can be reduced by more than 50% as well as the rf power density, leading to an increase on the growth rate to values higher than 3 Å/s. Spectroscopic ellipsometry and Raman spectroscopy show that the 27.12 MHz pm-Si:H films are more ordered than the pm-Si:H films produced at 13.56 MHz, while the infrared spectroscopy show that the SiH2 concentration in the films is strongly reduced. AFM measurements reveal that the films produced at 27.12 MHz films are more structured, presenting also higher roughness. © 2004 Elsevier B.V. All rights reserved.

Águas, H., Fortunato Martins E. R. "Influence of a DC grid on silane r.f. plasma properties." Vacuum. 64 (2002): 387-392. AbstractWebsite

In this work we show that it is possible to control the plasma regime in the region close to the substrate in r.f. silane discharges. The PECVD reactor works in a modified triode configuration, where the control over the plasma regime is performed by polarising a grid electrode, placed close to the r.f. electrode, with a DC power source. Besides that, the DC grid allows also to control the energy of the ion bombardment, because the plasma potential will be a function of the voltage (Vpol) applied to the DC grid. The silane plasma was characterised with a Langmuir probe and an impedance probe. We were able to identify three plasma regimes in the region close to the substrate: γ′ regime for Vpol<0 V; γ′-α regime for 0 V<Vpol<40 V; and α regime for Vpol40 V. The γ′ regime is associated with a high concentration of dust particles in plasma and high electron energy (≈8eV), while the α regime is associated with a free dust plasma and low electron energy (≈2eV). The intermediate regime, γ′-α, is characterised by the presence of smaller particles (≈2-5nm) that can be beneficial for the film's properties. © 2002 Elsevier Science Ltd. All rights reserved.

b Águas, H.a b, Filonovich Bernacka-Wojcik Fortunato Martins S. A. a I. "Role of trimethylboron to silane ratio on the properties of p-type nanocrystalline silicon thin film deposited by radio frequency plasma enhanced chemical vapour deposition." Journal of Nanoscience and Nanotechnology. 10 (2010): 2547-2551. AbstractWebsite

Trimethylboron (TMB) has been receiving attention as a valid alternative to diborane and methane mixtures for the deposition of p-type silicon films for applications in optoelectronic devices such as solar cells. In this paper we report on p-type hydrogenated nanocrystalline silicon carbide (nc-Si:C:H) films produced by standard 13.56 MHz plasma enhanced chemical vapour deposition technique, using TMB as gas source, under high hydrogen dilution (98%) and using high deposition pressures (3 Torr). The films obtained were characterized by spectroscopic ellipsometry (SE), Raman spectroscopy (RS), and electrical measurements to determine their optical, structural and electrical properties. We achieved conductivities as high as 8.3 (Ω cm) -1, one of the highest values of conductivity published to date using TMB with standard rf-PECVD. Spectroscopic ellipsometry modeling revealed that the films growth mechanism proceeds through a sub-surface layer mechanism that leads to the formation of nanocrystalline silicon. Copyright © 2010 American Scientific Publishers All rights reserved.

Águas, H., Fortunato Martins E. R. "Role of the i layer surface properties on the performance of a-Si:H Schottky barrier photodiodes." Sensors and Actuators, A: Physical. 99 (2002): 220-223. AbstractWebsite

In this work, we study the influence of the hydrogenated amorphous silicon (a-Si:H) surface treatment on the J-V characteristics of a-Si:H/Pd Schottky barrier photodiodes. The a-Si:H surface were etched, thermally oxidised and wet oxidised by H2O2. The a-Si:H films were characterised by spectroscopic ellipsometry, were we found that all the oxidation techniques promote an increase of the surface oxide thickness that was confirmed by the increase of the barrier height. The highest barrier was achieved by the H2O2 oxidation where a value of 1.17 eV was found. As a result of the barrier height increase, the dark reverse current density decreases up to 10-10 A/cm2 and the signal to noise ratio increases up to 106. The open circuit voltage under AM1.5 illumination conditions also increases from 0.4 to 0.5 V. These results reveal the importance of the a-Si:H surface preparation prior to metallization to improve the Schottky photodiodes properties. © 2002 Elsevier Science B.V. All rights reserved.