In this work we investigate the properties of a polymorphous silicon (pm-Si:H) metal-insulator-semiconductor (MIS) structure used in 3D position sensitive detectors (PSD). For the first time a 3D sensor made-up by pm-Si:H/SiO2/Au layers is presented. MIS structures present several advantages over p-i-n structures, such as easier fabrication, fast response time and higher resolution. The 1D MIS PSD that constitute the array were extensively studied aiming its application in 3D pattern recognition. The results obtained show that MIS PSD can achieve non-linearities below 2% and sensitivities of 3.2 μA/cm over 6 mm length sensors. The miniaturization of the sensors length to arrays of 6 and 16 mm, respectively showed average non-linearities of about 1.9% for the 16 mm sensor which proved to be the best solution for this MIS structure. © 2006 Elsevier B.V. All rights reserved.
cited By 2