Wengenack, NL, H. Lopes, MJ Kennedy, P. Tavares, AS Pereira, I. Moura, JJG Moura, and F. Rusnak. "
Redox potential measurements of the Mycobacterium tuberculosis heme protein KatG and the isoniazid-resistant enzyme KatG(S315T): Insights into isoniazid activation."
Biochemistry. 39 (2000): 11508-11513.
AbstractMycobacterium tuberculosis KatG is a multifunctional heme enzyme responsible for activation of the antibiotic isoniazid. A KatG(S315T) point mutation is found in >50% of isoniazid-resistant clinical isolates. Since isoniazid activation is thought to involve an oxidation reaction, the redox potential of KatG was determined using cyclic voltammetry, square wave voltammetry, and spectroelectrochemical titrations. Isoniazid activation may proceed via a cytochrome P450-like mechanism. Therefore, the possibility that substrate binding by KatG leads to an increase in the heme redox potential and the possibility that KatG(S315T) confers isoniazid resistance by altering the redox potential were examined. Effects of the heme spin state on the reduction potentials of KatG and KatG(S315T) were also determined. Assessment of the Fe3+/Fe2+ couple gave a midpoint potential of ca. -50 mV for both KatG and KatG(S315T). In contrast to cytochrome P450s, addition of substrate had no significant effect on either the KatG or KatG(S315T) redox potential. Conversion of the heme to a low-spin configuration resulted in a -150 to -200 mV shift of the KatG and KatG(S315T) redox potentials. These results suggest that isoniazid resistance conferred by KatG(S315T) is not mediated through changes in the heme redox potential. The redox potentials of isoniazid were also determined using cyclic and square wave voltammetry, and the results provide evidence that the ferric KatG and KatG(S315T) midpoint potentials are too low to promote isoniazid oxidation without formation of a high-valent enzyme intermediate such as compounds I and IT or oxyferrous KatG.
Águas, H., Cabrita Tonello Nunes Fortunato Martins A. P. P. "
Two step process for the growth of a thin layer of silicon dioxide for tunnelling effect applications."
Materials Research Society Symposium - Proceedings. Vol. 619. 2000. 179-184.
AbstractIn today's main crystalline silicon (c-Si) applications in MOS (metal-oxide-silicon), MIS (metal-insulator-semiconductor) or SIS (Semiconductor-Insulator-Semiconductor), the growing of the oxide layer plays the main role, dictating the device performances, in particular if it has to be grown by a low temperature process. Of fundamental importance is the SiO2 interface with the c-Si. A very low defect density interface is desirable so that the number of trapping states can be reduced and the devices performance optimised. A two step low temperature oxidation process is proposed. The process consists of growing first a layer of oxide by a wet process and then treating the grown oxide with an oxygen plasma. The oxygen ions from the plasma bombard the oxide causing compaction of the oxide and a decrease in the interface roughness and defect density. Infrared spectroscopy and spectroscopic ellipsometry measurements were performed on the samples to determine the oxide thickness, optical and structural properties. SIS structures were built and capacitance measurements were performed under dark and illuminated conditions from which were inferred the interface defect density and correlated with the oxide growth process.
Wengenack, NL, H. Lopes, MJ Kennedy, P. Tavares, AS Pereira, I. Moura, JJG Moura, and F. Rusnak. "
{Redox potential measurements of the Mycobacterium tuberculosis heme protein KatG and the isoniazid-resistant enzyme KatG(S315T): Insights into isoniazid activation}."
Biochemistry. 39 (2000): 11508-11513.
AbstractMycobacterium tuberculosis KatG is a multifunctional heme enzyme responsible for activation of the antibiotic isoniazid. A KatG(S315T) point mutation is found in >50% of isoniazid-resistant clinical isolates. Since isoniazid activation is thought to involve an oxidation reaction, the redox potential of KatG was determined using cyclic voltammetry, square wave voltammetry, and spectroelectrochemical titrations. Isoniazid activation may proceed via a cytochrome P450-like mechanism. Therefore, the possibility that substrate binding by KatG leads to an increase in the heme redox potential and the possibility that KatG(S315T) confers isoniazid resistance by altering the redox potential were examined. Effects of the heme spin state on the reduction potentials of KatG and KatG(S315T) were also determined. Assessment of the Fe3+/Fe2+ couple gave a midpoint potential of ca. -50 mV for both KatG and KatG(S315T). In contrast to cytochrome P450s, addition of substrate had no significant effect on either the KatG or KatG(S315T) redox potential. Conversion of the heme to a low-spin configuration resulted in a -150 to -200 mV shift of the KatG and KatG(S315T) redox potentials. These results suggest that isoniazid resistance conferred by KatG(S315T) is not mediated through changes in the heme redox potential. The redox potentials of isoniazid were also determined using cyclic and square wave voltammetry, and the results provide evidence that the ferric KatG and KatG(S315T) midpoint potentials are too low to promote isoniazid oxidation without formation of a high-valent enzyme intermediate such as compounds I and IT or oxyferrous KatG.