Export 9208 results:
Sort by: Author Title Type [ Year  (Desc)]
2008
Canejo, Joao P., Joao P. Borges, Helena M. Godinho, Pedro Brogueira, Paulo IC Teixeira, and Eugene M. Terentjev. "Helical Twisting of Electrospun Liquid Crystalline Cellulose Micro‐and Nanofibers." Advanced Materials. 20.24 (2008): 4821-4825. Abstract
n/a
Mateus, O., and J. J. Jacinto. "Hemidactylus turcicus." Atlas dos Anfíbio e Répteis de Portugal. Ed. Carretero Paulo M. A. O. S. A Loureiro, N F de Almeida. 2008. 134-135. Abstract
n/a
Pereira, L.a, Barquinha Fortunato Martins Kang Kim Lim Song Park P. a E. a. "High k dielectrics for low temperature electronics." Thin Solid Films. 516 (2008): 1544-1548. AbstractWebsite

In this work the electrical and structural properties of two high k materials as hafnium oxide (HfO2) and tantalum oxide (Ta2O5) produced at room temperature are exploited. Aiming low temperature processing two techniques were employed: r.f. sputtering and electron beam evaporation. The sputtered HfO2 films present a nanocrystalline structure when deposited at room temperature. The same does not happen for the evaporated films, which are essentially amorphous. The density and the electrical performance of both sputtered and evaporated films are improved after annealing them at 200 °C. On the other hand, the Ta2O5 samples deposited at room temperature are always amorphous, independently of the technique used. The density and electrical performance are not so sensitive to the annealing process. The set of data obtained show that these dielectrics processed at temperatures below 200 °C present promising properties aiming to produce devices at low temperature with improved interface properties and reduced leakage currents. © 2007 Elsevier B.V. All rights reserved.

Fortunato, E., Barquinha Gonçalves Pereira Martins P. G. L. "High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors." Solid-State Electronics. 52 (2008): 443-448. AbstractWebsite

Staggered bottom gate transparent thin film transistors (TTFTs) have been produced by rf magnetron sputtering at room temperature, using amorphous indium zinc oxide (IZO) semiconductor, for the channel as well as for the drain and source regions. The obtained TTFTs operate in the enhancement mode with threshold voltages of 2.4 V, saturation mobility of 22.7 cm2/V s, gate voltage swing of 0.44 V/dec and an ON/OFF current ratio of 7 × 107. The high performances presented by these TTFTs produced at room temperature, make these TFTs a promising candidate for flexible, wearable, disposable portable electronics as well as battery-powered applications. © 2007 Elsevier Ltd. All rights reserved.

Fortunato, E.a, Pereira Barquinha Botelho Do Rego Gongalves Vilà Morante Martins L. a P. a. "High mobility indium free amorphous oxide based thin film transistors." Proceedings of International Meeting on Information Display. Vol. 8. 2008. 1199-1202. Abstract

High mobility bottom gate thin film transistors (TFTs) with an amorphous gallium tin zinc oxide (a-GSZO) channel layer have been produced by rf magnetron cosputtering using a gallium zinc oxide (GZO) and tin (Sn) targets. The effect of the post annealing temperatures (200 °C, 250 °C and 300 °C) was evaluated and compared with two series of TFTs produced at room temperature and 150 °C during the channel deposition. From the results it was observed that the effect ofpos annealing is crucial for both series of TFTs either for stability as well as for improving the electrical characteristics. The a-GSZO TFTs operate in the enhancement mode (n-type), present a high saturation mobility of 24.6 cm2/Vs, a subthreshold gate swing voltage of 0.38 V/decade, a turn-on voltage of -0.5 V, a threshold voltage of 4.6 V and an ION/IOFF ratio of 8x107, satisfying all the requirements to be used in active-matrix backplane.

Fortunato, E.M.C.a, Pereira Barquinha Botelho Do Rego Goņalves Vil̀ Morante Martins L. M. N. a. "High mobility indium free amorphous oxide thin film transistors." Applied Physics Letters. 92 (2008). AbstractWebsite

High mobility bottom gate thin film transistors (TFTs) with an amorphous gallium tin zinc oxide (a-GSZO) channel layer have been produced by rf magnetron cosputtering using a gallium zinc oxide (GZO) and tin (Sn) targets. The effect of postannealing temperatures (200, 250, and 300 °C) was evaluated and compared with two series of TFTs produced at room temperature (S1) and 150 °C (S2) during the channel deposition. From the results, it was observed that the effect of postannealing is crucial for both series of TFTs either for stability as well as for improving the electrical characteristics. The a-GSZO TFTs (WL=5050 μm) operate in the enhancement mode (n -type), present a high saturation mobility of 24.6 cm2 V s, a subthreshold gate swing voltage of 0.38 V /decade, a turn-on voltage of -0.5 V, a threshold voltage of 4.6 V, and an Ion Ioff ratio of 8× 107, satisfying all the requirements to be used as active-matrix backplane. © 2008 American Institute of Physics.

Parthiban, S.a, Ramamurthi Elangovan Martins Fortunato Ganesan K. a E. b. "High-mobility molybdenum doped indium oxide thin films prepared by spray pyrolysis technique." Materials Letters. 62 (2008): 3217-3219. AbstractWebsite

Molybdenum doped indium oxide (IMO) thin films were deposited on the glass substrates preheated to 450 °C by spray pyrolysis technique. The Mo doping was varied between 0 and 2.0 at.%. The films were characterized by their structural, electrical and optical properties. The films are confirmed to be cubic bixbyite In2O3 with a strongest orientation along (222) plane, which is shifted to (400) plane for the increase in Mo doping to 1.25 and 2 at.%. The film deposited with 0.5 at.% Mo doping shows high mobility of 76.9 cm2V- 1s- 1 , resistivity of 1.8 × 10- 3 Ω-cm and high carrier concentration of 4.6 × 1019 cm- 3 with 81.3% transmittance in the visible range between 500 and 800 nm. Further, the transparency extents well into the near-IR range. © 2008 Elsevier B.V. All rights reserved.

Fortunato, E., Correia Barquinha Pereira Goncalves Martins N. P. L. "High-performance flexible hybrid field-effect transistors based on cellulose fiber paper." IEEE Electron Device Letters. 29 (2008): 988-990. AbstractWebsite

In this letter, we report for the first time the use of a sheet of cellulose-fiber-based paper as the dielectric layer used in oxide-based semiconductor thin-film field-effect transistors (FETs). In this new approach, we are using the cellulose-fiber-based paper in an "interstrate"structure since the device is built on both sides of the cellulose sheet. Such hybrid FETs present excellent operating characteristics such as high channel saturation mobility (> 30 cm2Vs), drain-source current on/off modulation ratio of approximately 104, near-zero threshold voltage, enhancement n-type operation, and subthreshold gate voltage swing of 0.8 V/decade. The cellulose-fiber-based paper FETs' characteristics have been measured in air ambient conditions and present good stability, after two months of being processed. The obtained results outpace those of amorphous Si thin-film transistors (TFTs) and rival with the same oxide-based TFTs produced on either glass or crystalline silicon substrates. The compatibility of these devices with large-scale/large-area deposition techniques and low-cost substrates as well as their very low operating bias delineates this as a promising approach to attain high-performance disposable electronics like paper displays, smart labels, smart packaging, RFID, and point-of-care systems for self-analysis in bioapplications, among others. © 2008 IEEE.

Fortunato, E., L. Raniero, L. Silva, A. Gonçalves, A. Pimentel, P. Barquinha, H. Aguas, L. Pereira, G. Gonçalves, and I. Ferreira. "Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications." Solar Energy Materials and Solar Cells. 92.12 (2008): 1605-1610. Abstract
n/a
Fortunato, E., Raniero Siva Gonçalves Pimentel Barquinha Águas Pereira Gonçalves Ferreira Elangovan Martins L. L. A. "Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications." Solar Energy Materials and Solar Cells. 92 (2008): 1605-1610. AbstractWebsite

Transparent and highly conducting gallium zinc oxide (GZO) films were successfully deposited by RF sputtering at room temperature. A lowest resistivity of∼2.8 × 10-4 ωcm was achieved for a film thickness of 1100nm (sheet resistance ∼2.5ω/□), with a Hall mobility of 18cm2/Vs and a carrier concentration of 1.3 × 1021 cm-3. The films are polycrystalline with a hexagonal structure having a strong crystallographic c-axis orientation. A linear dependence between the mobility and the crystallite size was obtained. The films are highly transparent (between 80% and 90% including the glass substrate) in the visible spectra with a refractive index of about 2, very similar to the value reported for the bulk material. These films were applied to single glass/TCO/pin hydrogenated amorphous silicon solar cells as front layer contact, leading to solar cells with efficiencies of about 9.52%. With the optimized deposition conditions, GZO films were also deposited on polymer (PEN) substrates and the obtained results are discussed. © 2008 Elsevier B.V. All rights reserved.

Fortunato, E., L. Raniero, L. Silva, A. Goncalves, A. Pimentel, P. Barquinha, H. Aguas, L. Pereira, G. GONCALVES, I. Ferreira, and others. "Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications." Solar Energy Materials and Solar Cells. 92 (2008): 1605-1610. Abstract
n/a
Cruz, C., M. H. Godinho, AJ Ferreira, PS Kulkarni, CAM Afonso, and Paulo Ivo Cortez Teixeira. "How foam-like is the shear-induced lamellar phase of an ionic liquid crystal?" Philosophical Magazine Letters. 88.9-10 (2008): 741-747. Abstract
n/a
d c Martins, R.a, Baptista Silva Raniero Doria Franco Fortunato P. b L. a. "Identification of unamplified genomic DNA sequences using gold nanoparticle probes and a novel thin film photodetector." Journal of Non-Crystalline Solids. 354 (2008): 2580-2584. AbstractWebsite

This paper describes a novel colorimetric method for detection of nucleic acid targets in a homogeneous format with improved sensitivity by means of a system based on the combination of a tunable monochromatic light source and an amorphous/nanocrystalline silicon photodetector that detects color and light intensity changes undergone by samples/assays containing tailored gold nanoparticles probes. This new low cost, portable, fast and simple optoelectronic platform, with the possibility to be re-used, permits detection of at least 400 fentomole of specific DNA sequences without target or signal amplification and was applied to the rapid detection of human pathogens in large variety of clinical samples such as Mycobacterium tuberculosis. © 2008 Elsevier B.V. All rights reserved.

Wang, J.a, Elamurugu Sallet Lusson Amiri Jomard Martins Fortunato E. a V. b. "Influence of different carrier gases on the properties of ZnO films grown by MOCVD." Boletin de la Sociedad Espanola de Ceramica y Vidrio. 47 (2008): 242-244. AbstractWebsite

ZnO films were grown on sapphire (001) substrate by atmospheric MOCVD using diethyl zinc and tertiary butanol precursors. The influence of different carrier gases (H2 and He) on the properties was analyzed by their structural (XRD), microstructural (SEM) and compositional (SIMS) characterization. The intensity of the strongest diffraction peak from ZnO (002) plane was increased by about 2 orders of magnitude when He is used as carrier gas, indicating the significant enhancement in crystallinity. The surface of the samples grown using H2 and He carrier gases was composed of leaf-like and spherical grains respectively. Hydrogen [H] content in the film grown using H2 is higher than that using He, indicating that the [H] was influenced by the H2 carrier gas. Ultraviolet emission dominates the low temperature PL spectra. The emission from ZnO films grown using He show higher optical quality and more emission centers.

Cui, H.-N.a, Teixeira Meng Martins Fortunato V. a L. -. "Influence of oxygen/argon pressure ratio on the morphology, optical and electrical properties of ITO thin films deposited at room temperature." Vacuum. 82 (2008): 1507-1511. AbstractWebsite

Transparent conductive oxides (TCOs) such as indium tin oxide (ITO) thin films onto glass substrates are widely used as transparent and conductive electrodes for a variety of technological applications including flat panel displays, solar cells, smart windows, touch screens, etc. ITO films on glass and polycarbonate (PC) substrates were prepared at room temperature (RT) and at different PO2. The films were characterized in terms of the surface roughness (δ), sheet resistance, the refractive index (n) and extinction coefficient (k). The free carrier density (nc) and the carrier mobility (μ) of the ITO (In2O3:Sn) films were measured and studied. The nc and μ values vary in different ratio of oxygen partial pressure (PO2) of ITO deposition. The observed changes in the ITO film resistivity are due to the combined effect of different parameter values for nc and μ. From AFM analysis and spectra calculations, the surface roughness values of the ITO films were studied and it was observed that the δ values were lower than 15 nm. The energy band gap Eg ranges from 3.26 eV to 3.66 eV as determined from the absorption spectrum. It was observed an increase on the energy band gap as the PO2 decrease in the range of 20-2% PO2. The Lorentz oscillator classical model has also been used to fit the ellipsometric spectra in order to obtain both refractive index n and extinction coefficient κ values. © 2008 Elsevier Ltd. All rights reserved.

Ortigueira, M., and F. Coito. "Initial Conditions: What Are We Talking About?" (2008). Abstract
n/a
Ribeiro, Rita, and Isabel L. Nunes Interfaces Usability for Monitoring Systems. Eds. Frederic Adam, and Patrick Humphreys. Vol. II. Encyclopedia of Decision Making and Decision Support Technologies, II. Idea Group, 2008. Abstract
n/a
Martins, Rui M. S., M. Beckers, A. Muecklich, N. Schell, R. J. C. Silva, K. K. Mahesh, Braz F. M. Fernandes, AT Marques, AF Silva, APM Baptista, C. Sa, FJLA Alves, LF Malheiros, and M. Vieira. "The Interfacial Diffusion Zone in Magnetron Sputtered Ni-Ti Thin Films Deposited on Different Si Substrates Studied by HR-TEM." Advanced Materials Forum Iv. Vol. 587-588. 2008. 820-823. Abstract
n/a
Gil, P., Alberto Cardoso, J. Nascimento, A. Medina, L. Palma, and P. Furtado. "Internet-Based Real-Time Control Laboratory." 8th Portuguese Conference on Automatic Control. n/a 2008. Abstract
n/a
Oliveira, L. B., J. R. Fernandes, I. M. Filanovsky, C. J. M. Verhoeven, and M. M. Silva. "Introduction." Analysis and Design of Quadrature Oscillators (2008): 1-5. Abstract
n/a
Prabakaran, R., Silva Fortunato Martins Ferreira L. E. R. "Investigation of hydrocarbon coated porous silicon using PECVD technique to detect CO2 gas." Journal of Non-Crystalline Solids. 354 (2008): 2610-2614. AbstractWebsite

In the present work, we investigate the influence of hydrocarbon (CHx) thin film coating on porous silicon (PS) by plasma enhanced chemical vapor deposition (PECVD) technique to detect CO2 gas. The fabricated CHx/PS heterojunction device shows up to one and two orders of magnitude enhancement in current under CO2 gas exposure. FTIR spectroscopy measurements reveal a remarkable structural modification of the CHx/PS device during CO2 gas exposure. Further, the enhancement of CHx related absorbance bands by a factor 6.2 for the CHx/PS specimen in comparison with PS confirm the good quality of the deposited CHx thin films. © 2007 Elsevier B.V. All rights reserved.

Prabakaran, R., L. Silva, E. Fortunato, R. Martins, and I. Ferreira. "Investigation of hydrocarbon coated porous silicon using PECVD technique to detect CO< sub> 2 gas." Journal of Non-Crystalline Solids. 354.19 (2008): 2610-2614. Abstract
n/a
Vidinha, P., N. M. T. Louren?o, C. Pinheiro, A. R. Brás, T. Carvalho, T. Santos-Silva, A. Mukhopadhyay, MJ Romão, J. Parola, M. Dionisio, J. M. S. Cabral, CAM Afonso, and S. Barreiros. "Ion jelly: A tailor-made conducting material for smart electrochemical devices." Chemical Communications (2008): 5842-5844. Abstract
n/a