Nunes, P., Marques Fortunato Martins A. E. R. "
Performances presented by large area ZnO thin films deposited by spray pyrolysis."
Materials Research Society Symposium Proceedings. Vol. 685. 2001. 152-157.
AbstractIn this work we present the results of a study on the uniformity of ZnO thin films produced by spray pyrolysis. The properties of the thin films depend essentially on the carrier gas pressure and gas flow used. The best films for optoelectronic applications were obtained with a carrier gas pressure of 2 bar and solution flow of 37 ml/min. The velocity of the nozzle affects essentially the uniformity of the ZnO thin films. However this important characteristic of the large area thin films is independent of the nature (doped and undoped) of the thin film and exhibits a high dependence on the variation of the temperature along the substrate. © 2001 Materials Research Society.
Ferreira, I., Fortunato Martins E. R. "
Porous silicon thin film gas sensor."
Materials Research Society Symposium - Proceedings. Vol. 664. 2001. A2671-A2676.
AbstractThe performances of amorphous and nano-crystalline porous silicon thin films as gas detector are pioneer reported in this work. The films were produced by the hot wire chemical vapour deposition (HW-CVD). These films present a porous like-structure, which is due to the uncompensated bonds and oxidise easily in the presence of air. This behaviour is a problem when the films are used for solar cells or thin film transistors. For as gas detectors, the oxidation is a benefit, since the CO, H2 or O2 molecules replace the OH adsorbed group. In the present study we observe the behaviour of amorphous and nano-crystalline porous silicon thin films under the presence of ethanol, at room temperature. The data obtained reveal a change in the current values recorded by more than three orders of magnitude, depending on the film preparation condition. This current behaviour is due to the adsorption of the OH chemical group by the Si uncompensated bonds as can be observed in the infrared spectra. Besides that, the current response and its recover time are done in few seconds.