Publications

Export 575 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Paula, A.S., Canejo Martins Braz Fernandes J. P. H. G. "Effect of thermal cycling on the transformation temperature ranges of a Ni-Ti shape memory alloy." Materials Science and Engineering A. 378 (2004): 92-96. AbstractWebsite

Shape memory alloys (SMA) represents a class of metallic materials that has the capability of recovering a previously defined initial shape when subject to an adequate thermomechanical treatment. The present work aims to study the influence of thermal cycles on the transition temperatures of a Ni-Ti alloy. In this system, small variations around the equiatomic composition give rise to significant transformation temperature variations ranging from 173 to 373 K. SMA usually presents the shape memory effect after an annealing treatment at ca. 973 K. The optimisation of the thermomechanical treatment will allow to "tune" the material to different transformation temperature ranges from the same starting material, just by changing the processing conditions. Differential scanning calorimeter (DSC) and in situ high-temperature X-ray diffraction (XRD) have been used to identify the transformation temperatures and the phases that are present after different thermal cycles. The results concerning a series of thermal cycles with different heating and cooling rates (from 1.67×10-2 to 1.25×10-1 K/s) and different holding temperatures (from 473 to 1033 K) are presented. © 2004 Elsevier B.V. All rights reserved.

Barquinha, P., Pimentel Marques Pereira Martins Fortunato A. A. L. "Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide." Journal of Non-Crystalline Solids. 352 (2006): 1756-1760. AbstractWebsite

Insensitivity to light irradiation is desirable for conventional applications of thin-film transistors, i.e., the active matrices of displays. However, if one produces a device presenting controlled sensitivity to light, many other applications can benefit or can even be created. In this work it is shown the influence of the photon energy on the optoelectronic properties presented by n-type bottom-gate thin-film transistors based on indium zinc oxide. In the dark, the devices present very good electrical properties, working in the enhancement mode, exhibiting on-off ratios higher than 107 and channel mobility above 30 cm2/V s. Remarkable results were achieved when the devices were exposed to light radiation, the most striking one is the possibility to switch between enhancement (in the dark) and depletion (illuminated) modes, with different threshold voltages and on/off ratios, function of the light power density and wavelength used. This type of behavior permits to design circuits where one can have the same transistor working either in the enhancement or depletion modes, function of the light beam and intensity impinging on it, highly important for short wavelength detector applications. © 2006 Elsevier B.V. All rights reserved.

c Gokulakrishnan, V.a, Parthiban Elangovan Ramamurthi Jeganathan Kanjilal Asokan Martins Fortunato S. a E. c. "Effects of O7+ swift heavy ion irradiation on indium oxide thin films." Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. 269 (2011): 1836-1840. AbstractWebsite

Indium oxide thin films deposited by spray pyrolysis were irradiated by 100 MeV O7+ ions with different fluences of 5 × 1011, 1 × 1012 and 1 × 1013 ions/cm2. X-ray diffraction analysis confirmed the structure of indium oxide with cubic bixbyite. The strongest (2 2 2) orientation observed from the as-deposited films was shifted to (4 0 0) after irradiation. Furthermore, the intensity of the (4 0 0) orientation was decreased with increasing fluence together with an increase in (2 2 2) intensity. Films irradiated with maximum fluence exhibited an amorphous component. The mobility of the as-deposited indium oxide films was decreased from ∼78.9 to 43.0 cm2/V s, following irradiation. Films irradiated with a fluence of 5 × 1011 ions/cm2 showed a better combination of electrical properties, with a resistivity of 4.57 × 10-3 Ω cm, carrier concentration of 2.2 × 1019 cm-3 and mobility of 61.0 cm2/V s. The average transmittance obtained from the as-deposited films decreased from ∼81% to 72%, when irradiated with a fluence of 5 × 1011 ions/cm2. The surface microstructures confirmed that the irregularly shaped grains seen on the surface of the as-deposited films is modified as "radish-like" morphology when irradiated with a fluence of 5 × 1011 ions/cm2. © 2011 Elsevier B.V. All rights reserved.

b b b b b b b Martins, R.a b, Carvalho Fortunato Maçarico Santos Baia Viera Guimarães N. a E. a. "Effects of U.V. light on the transport properties of a-Si : H films during their growth." Journal of Non-Crystalline Solids. 97-98 (1987): 1399-1402. AbstractWebsite

The influence of U.V. light on the transport properties of a-Si : H films during its growth in a r.f. double chamber system was investigated by conductivity, optical absorption, I.R. absorption, spectral photoconductivity and X-ray diffraction measurements. It was concluded that the presence of U.V. light during the deposition process controls the way how hydrogen is incorporated in the structure as well as the impurity atoms. The microcrystalline films investigated present sharp peaks in the I.R. spectra. Both boron and phosphorus doped films show conductivities higher than 10 S cm-1 and estimated crystalline sizes of the order of 80 Å. © 1987.

Prabakaran, R.a, Peres Monteiro Fortunato Martins Ferreira M. b T. b. "The effects of ZnO coating on the photoluminescence properties of porous silicon for the advanced optoelectronic devices." Journal of Non-Crystalline Solids. 354 (2008): 2181-2185. AbstractWebsite

In the present work we investigate, the role of zinc oxide (ZnO) thin films passivating layer deposited by rf magnetron sputtering at room temperature on low (18%) and high (80%) porosity porous silicon (PS). The micro-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) analysis have been carried out to understand the effect of ZnO films coating on PS. A systematic investigation from Raman spectroscopy suggests the formation of a good quality ZnO wurtzite structure on PS. The photoluminescence (PL) measurements on PS and ZnO coated PS shows a red, blue and UV emission bands at around ∼1.8, ∼2.78 and ∼3.2 eV. An enhancement of all PL emission bands have been achieved after ZnO films deposition on high porosity PS. © 2007 Elsevier B.V. All rights reserved.

Pereira, L., Barquinha Fortunato Martins P. E. R. "Electrical performances of low temperature annealed hafnium oxide deposited at room temperature." Materials Science Forum. 514-516 (2006): 58-62. AbstractWebsite

In this work, HfO2 was deposited by r.f. sputtering at room temperature and then annealed for different times at 200°C in a forming gas atmosphere. After annealing for 2 hours the HfO2 layers present a reduction on the flat band voltage of about 1 V, relatively to the as deposited film, decreasing from -2.23V down to -1.28 V. This means an improvement of the interface properties and a reduction on the oxide charge density from 1.33×1012 cm-2 to 7.62×1011 cm -2. The dielectric constant reaches a maximum of 18.3 after 5h annealing due to film's densification. When annealing for longer times such as 10h a small degradation of the electrical properties is observed. After 10h annealing the dielectric constant, flat band voltage and fixed charge density are respectively, 14.9, -2.96 V and 1.64×1012 cm-2 and the leakage current also increases due to film's crystallization.

Ferreira, I., Raniero Fortunato Martins L. E. R. "Electrical properties of amorphous and nanocrystalline hydrogenated silicon films obtained by impedance spectroscopy." Thin Solid Films. 511-512 (2006): 390-393. AbstractWebsite

Nanocrystalline hydrogenated silicon (nc-Si:H) thin films are generally accepted to be a two phase material-Si crystalline and Si:H amorphous. This work reports the use of impedance spectroscopy to determine the amorphous and crystalline electrical conductivity of a/nc-Si:H films obtained by hot wire chemical vapour deposition. Different relaxation time or time constants are detected, if the film is composed by inhomogeneous material, by measuring ac impedance in a wide range of frequencies. Relating the conduction mechanism of the film to a series of two RC circuits constituted by a resistance and a capacitor in parallel, we may determine distinct ac conductivities and correlate that to the crystalline, amorphous and interface components. The amorphous films analysed exhibit one ac conductivity component while for nanocrystalline films two ac conductivity components are observed. The average value of ac conductivities is in agreement with that of dc conductivity. © 2006.

Figueiredo, V.a, Elangovan Gonçalves Franco Alves Park Martins Fortunato E. a G. a. "Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature." Physica Status Solidi (A) Applications and Materials Science. 206 (2009): 2143-2148. AbstractWebsite

Copper oxide thin films were obtained by annealing (temperature ranging between 100 and 450 °C) the metallic Cu films deposited on glass substrates by e-beam evaporation. XRD studies confirmed that the cubic Cu phase of the asdeposited films changes into single cubic Cu 2Ophase and single monoclinic CuO phase, depending on the annealing conditions. The crystallite size is varied betweeñ12 and 31 nm. The lattice parameters of cubic Cu and Cu 2Ophases are estimated tõ3.60 and ̃4.26 Å , respectively. The films with Cu 2O phase showed p-type characteristics. The conductivity is decreased linearly with the decreasing temperature (1/T), which has confirmed the semiconductor nature of the deposited films. The calculated activation energy is varied between 0.10 and 0.16 eV. The surface microstructure is changed depending on the variation in the annealing temperature. The poor transmittance of the asdeposited films (<1%) is increased to a maximum of ̃80% (800 nm) on annealing at 200 °C. The estimated direct allowed band gap is varied between 1.73 and 2.89 eV. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Rozati, S.M.a, Moradi Golshahi Martins Fortunato S. a S. a. "Electrical, structural and optical properties of fluorine-doped zinc oxide thin films: Effect of the solution aging time." Thin Solid Films. 518 (2009): 1279-1282. AbstractWebsite

In this paper ageing effects of the solution used to prepare fluorine-doped ZnO films by the spray pyrolysis technique were investigated, concerning its role on the structure, the electrical and optical properties of films produced. The data reveal that the sheet resistance of the ZnO:F thin film decreases with the age of the solution used, reaching a minimum of 24 Ω/□, after 15 days. On the other hand the optical transmittance increases for films deposited using 6 days aging solution, decreasing afterwards as the aging time increases, being the optical transmittance in the visible range below 55%, for films deposited from solutions 36 days in age. The X-ray diffraction spectra show that the aged films are polycrystalline in nature with a [100] predominant orientation. The data also show that the intensity of (100) peak increases as the time of solution age increases, which is related to an improvement of the film crystallinity. © 2009 Elsevier B.V. All rights reserved.

Martins, J.I.a, Costa Bazzaoui Gonçalves Fortunato Martins S. C. a M. "Electrodeposition of polypyrrole on aluminium in aqueous tartaric solution." Electrochimica Acta. 51 (2006): 5802-5810. AbstractWebsite

The electrosynthesis of polypyrrole (PPy) has been achieved on aluminium in aqueous medium of tartaric acid by means of cyclic voltammetry, potentiostatic and galvanostatic techniques. Scanning electron microscopy (SEM) and X-ray microanalysis by energy spectroscopy dispersion (EDS) applying on surfaces show that the PPy coating is developed from the metal surface through the cracks of the initial Al2O3 layer. A mechanism involving the participation of the supporting electrolyte and the pyrrole (Py) in distinct active sites was proposed based on the linear sweep voltammetry. It is observed for all applied electrochemical techniques that the pyrrole concentration has to be higher than 0.1 M to allow the polypyrrole electrodeposition in acid medium. Scanning electron microscopy, secondary electrons (SE) and backscattering electrons (BE), shows that the PPy coating obtained in galvanostatic and potentiostatic modes starts with small islands at weak applied potentials or current densities. Moreover, EDS reveals a good homogeneity and compactness of the film achieved in galvanostatic method. The corrosion results in 3% NaCl medium show that the PPy coating decreases the corrosion behaviour of the aluminium. The bilayer Al2O3/PPy shows a capacitor with future applications. © 2006 Elsevier Ltd. All rights reserved.

Lavado, M., Martins Ferreira Lavareda Fortunato Vieira Guimarães R. I. G. "Electron paramagnetic resonance of defects in doped microcrystalline silicon." Vacuum. 39 (1989): 791-794. AbstractWebsite

Experimental results on structure defects in microcrystalline (μc) n- and p-doped μc-S1-x:Cx:H films deposited on alkali-free glass substrates by spatial plasma separation1 and obtained by electron paramagnetic resonance (EPR) are presented. The technique used for subtracting the substrate effect on recorded spectra is also discussed as well as its quantification. The microscopic structure of intrinsic defects and impurity states and their role in transport mechanisms are studied and correlated with the composition of their films. These results are also related to transport properties of deposited films in order to observe the role of dopant centres, located at conduction band tails, in controlling the electrical properties. © 1989.

Martins, R.a, Almeida Barquinha Pereira Pimentel Ferreira Fortunato P. b P. a. "Electron transport and optical characteristics in amorphous indium zinc oxide films." Journal of Non-Crystalline Solids. 352 (2006): 1471-1474. AbstractWebsite

This paper discusses the electron transport and the optical characteristics of amorphous indium zinc oxide and the role of the oxygen partial pressure on tailoring its properties. The data show that by varying the oxygen partial pressure during the deposition process from 10-3 to 2 × 10-1 Pa, the electrical resistivity varies from about 10-4 to 2 × 101 Ω cm, which corresponds to a variation on the Hall mobility from 60 to 10 cm2 V-1 s-1. The conductivity and mobility analysis show that the transport of carriers is not band tail limited, as happens in conventional disordered semiconductors, but highly dependent on the ionicity and the presence of oxygen vacancies, where mobility is mainly limited by carrier scattering. The optical characteristics inferred from the transmittance data reveal films with optical gaps in the range of 3.68-3.76 eV, very close to the ones observed on crystalline/polycrystalline IZO films (3.7-3.9 eV). © 2006 Elsevier B.V. All rights reserved.

Martins, R.a, Barquinha Pimentel Pereira Fortunato Kang Song Kim Park Park P. a A. a. "Electron transport in single and multicomponent n-type oxide semiconductors." Thin Solid Films. 516 (2008): 1322-1325. AbstractWebsite

The electron transport in n-type polycrystalline zinc oxide, nanocrystalline Zinc-Gallium-Oxygen and amorphous Indium-Zinc-Oxygen systems produced by rf magnetron sputtering at room temperature, under different oxygen partial pressure were investigated. It was found that the carrier transport is not band tail limited, being governed by metal cations irrespective to the film's structure. The highest net room temperature electron mobility was achieved on the amorphous films and noticed that for the single component oxides the mobility decreases as the carrier concentration increases, while the reverse behaviour was observed for the multicomponent oxides, independently of their structure. These behaviours are related to the role that negative charge defects in excess of 1010 cm- 2 generated on multicomponent oxides have on carriers scattering and so on their electronic performances. © 2007 Elsevier B.V. All rights reserved.

b Jones, D.I.a, Spear Le Comber Li Martins W. E. a P. "Electronic transport and photoconductivity in phosphorus-doped amorphous germanium." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 39 (1979): 147-158. AbstractWebsite

It is shown that the electronic properties of amorphous germanium (a-Ge) prepared by the glow-discharge decomposition of germane can be controlled systematically by substitutional phosphorus doping from the gas phase. Specimens with different doping levels have' been investigated by conductivity, thermoelectric power and Hall effect measurements in a temperature range between 160 and 450 K. The dependence of conductivity on doping level is qualitatively similar to that in a-Si, but the range of control is limited in a-Ge by the smaller mobility gap. Also the larger overall density of gap states in this material reduces the doping sensitivity. The above transport measurements and their temperature dependence can be interpreted in a quantitatively consistent manner- by a two-path model in which conduction takes place in the extended states and in another path through the localized states. As 111 a-Si, the photoconductivity of glow-discharge Ge can be appreciably sensitized by phosphorus doping. The μτ product deduced from such experiments on a-Ge and a-Si are compared for different preparation techniques. The data show that irrespective of the presence of hydrogen the method of deposition remains an important factor in determining the density of gap states. © 1979 Taylor & Francis Ltd.

Elamurugu, E.a, Shanmugam Gonçalves Franco Alves Martins Fortunato P. a G. a. "The electronic transport mechanism in indium molybdenum oxide thin films RF sputtered at room temperature." EPL. 97 (2012). AbstractWebsite

Indium molybdenum oxide (IMO) thin films were radio-frequency (RF) sputtered at room temperature (RT) and studied as a function of base pressure (BP). The crystallinity of the films is decreased with the increase in BP. A maximum mobility (μ) of 49.6 cm 2 V -1 s -1 was obtained from the IMO films deposited at RT without any post-annealing treatment. The electronic behaviour of the deposited films was investigated by temperature-dependent (100-550 K) Hall measurements. Study on the scattering mechanisms based on the experimental data and theoretical models show that the ionized scattering centres are dominating. The films possess wide work function (4.91 eV) and high transmittance (> 70%) over visible and near infrared (NIR) range. The obtained results, especially the high work function and NIR transmittance, are very promising particularly in applications such as optical detectors and solar cells. Copyright © EPLA, 2012.

Martins, R., Ferreira Fortunato I. E. "Electronics with and on paper." Physica Status Solidi - Rapid Research Letters. 5 (2011): 332-335. AbstractWebsite

Today there is a strong interest in the scientific and industrial community concerning the use of biopolymers for electronic applications, driven mainly by low-cost and disposable applications. Adding to this interest, we must recognise the importance of the dream of wireless auto-sustained and low-energy-consumption electronics. This dream can be fulfilled by cellulose paper, the lightest and the cheapest known substrate material, as well as the Earth's major biopolymer and of tremendous global economic importance. Most of the paper used up to now is optimised in terms of the required mechanical and physical properties to be used as the support of inks of different origins. In the future, specific electronic heterogeneous paper sheets should be fabricated aiming to get paper fibers with required bulk and surface functionalities, proper water/vapour barrier, size and diameter/thickness of the fibrils and full paper thickness. This will be the function of components/devices to be incorporated/integrated such as thin-film transistors, complementary metal oxide semiconductor devices, passive electronic components (resistances, inductors and capacitors), memory transistors, electrochromics and thin-film paper batteries. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Gaspar, D.a, Pereira Delattre Guerin Fortunato Martins L. a A. b. "Engineered cellulose fibers as dielectric for oxide field effect transistors." Physica Status Solidi (C) Current Topics in Solid State Physics. 12 (2015): 1421-1426. AbstractWebsite

When thinking on low cost and sustainable electronic systems, paper can be considered as an interesting option to be used as substrate but also as a component of such systems. In this work we have tailored paper samples that were used simultaneously as physical support and dielectric in oxide based paper field effect transistors (FETs). It was observed that the gate leakage current in these devices depends directly from fibril's dimension and arrangement, being lower for micro/nano fibrillated cellulose paper. Moreover, extra ionic charge added to the paper during its production results in the improvement of FETs' electrical properties, with saturation mobility of 16 cm 2V -1s -1 and on/off current ratio close to 105. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Martins, R., Ferreira Águas Silva Fortunato Guimarães I. H. V. "Engineering of a-Si:H device stability by suitable design of interfaces." Solar Energy Materials and Solar Cells. 73 (2002): 39-49. AbstractWebsite

Where a-Si:H pin devices are concerned, one of the main obstacles regarding improved performance is device stability, usually attributed to adverse behaviour at various interfaces within the device. Several attempts have been made to overcome this problem, such as the use of blocking layers at the interfaces. Although these have led to some improvements in device performance, most of the problems associated with device stability remain. This is mainly due to the defects at the interfaces, since the blocking layers (silicon alloys with carbon, nitrogen or oxygen) usually have a high density of bulk states, in comparison to intrinsic a-Si:H films. In this paper, we present a method that seems to be capable of improving device stability. It consists of performing a controlled removal of oxide interlayers at the interfaces, by an appropriate etching process. This enables the production of highly smoothed interfaces, and reduces possible cross-contamination of the i-layer from the adjacent doped layers. This amounts to a new design of typical pin devices, in which thin absorber layers are placed at the p/i and i/n interfaces. Their purpose is to trap most of the impurity atoms diffused from the doped layers, after which they are removed by appropriate etching. The fabrication of the absorbers (sacrificial layers), the nature of the etching and the tailoring of the defect profile at the interfaces will be discussed, including the performance exhibited by the resulting devices. © 2002 Elsevier Science B.V. All rights reserved.

Martins, R., Ferreira Carvalho Guimarães I. N. L. "Engineering of plasma deposition systems used for producing large area a-Si:H devices." Journal of Non-Crystalline Solids. 137-138 (1991): 757-760. AbstractWebsite

One of the main problems in producing large area amorphous silicon devices concerns films uniformity. In this paper we present data concerning the role of reactor geometry and design and on the film performances as well as the problems related to mechanical mismatches in scaling up the reactor size. © 1991 Elsevier Science Publishers B.V. All rights reserved.

Martins, R., Ferreira I. "Engineering of the energy coupling in PECVD systems used to produce large area a-Si:H coatings." Vacuum. 45 (1994): 1107-1108. AbstractWebsite

This paper deals with the engineering aspects related to the rf energy coupling in Plasma Enhanced Chemical Vapour Deposition (PECVD) processes, in a diode-type unit in which an extra grid is used. The main emphasis is given in the determination of the real power delivered to the gas and comparing it with the total power losses, besides determining the best way to control the powder formed during the process. © 1994.

Nayak, P.K., Pinto Gonçalves Martins Fortunato J. V. G. "Environmental, optical, and electrical stability study of solution-processed zinc-tin-oxide thin-film transistors." IEEE/OSA Journal of Display Technology. 7 (2011): 640-643. AbstractWebsite

In this paper, we report the environmental, optical, and gate bias stress stability of amorphous zinc-tin-oxide (ZTO) thin-film transistors (TFTs) fabricated by sol-gel spin-coating method. The ZTO TFTs showed excellent environmental and optical stability. The threshold voltage stability of ZTO TFTs was sensitive to both positive and negative gate bias stress. Maximum threshold voltage shifting of +1.9 and -3.2 V was observed under a gate bias stress of +10 and -10 V, respectively, with no significant change to subthreshold swing value. © 2006 IEEE.

b Fortunato, E.a, Figueiredo Barquinha Elamurugu Barros Goņalves Park Hwang Martins V. a P. a. "Erratum: Thin-film transistors based on p-type Cu2 O thin films produced at room temperature (Applied Physics Letters (2010) 96 (192102))." Applied Physics Letters. 96 (2010). AbstractWebsite
n/a
Ferreira, I., Fortunato Martins E. R. "Ethanol vapour detector based in porous a-Si:H films produced by HW-CVD technique." Sensors and Actuators, B: Chemical. 100 (2004): 236-239. AbstractWebsite

In this work, we show the possibility to use undoped porous silicon (PS) thin films produced by hot wire chemical vapour deposition technique (HW-CVD) as ethanol detector. Silicon thins films produced by HW-CVD technique, under certain deposition conditions, have a porous structure [Vacuum 52 (1999) 147]. Therefore, in the presence of an alcohol, the OH group is adsorbed by the uncompensated bonds behaving as donor-like carriers leading to an increase in the current flowing through the material. This current enhancement is bias dependent in glass/ITO/i-a-Si:H/Al sensor and increases as the ethanol vapour pressure increases from 10-1mbar to atmospheric pressure. The response time of the current of the sensor and its recovery time are in the range of 10-50s at room temperature. Ethanol quantities above 50ppm can be detected. © Published by Elsevier B.V.

Grimmeiss, H.a, Martins Duart R. b J. M. "Excellence in European universities." Materials Today. 7 (2004): 56-60. AbstractWebsite

The need to improve the efficiency of the European university system is discussed. It is considered possible to increase university funding by letting students pay for their education. It is suggested that European universities raise more money for research from private sources by selling services. It is found appropriate to strive for excellence at the level of specific departments or schools to begin with.

Pinto, J.V.a, Branquinho Barquinha Alves Martins Fortunato R. a P. a. "Extended-gate ISFETs based on sputtered amorphous oxides." IEEE/OSA Journal of Display Technology. 9 (2013): 729-734. AbstractWebsite

We present the results obtained with an extended-gate ISFET totally based on amorphous oxides (GIZO as the semiconductor, +{\hbox{Ta}}-{2}{\hbox{O}}-{5}{\ hbox{:SiO}}-inf2-inf as the dielectric and +{\hbox{Ta}}-{2}{\hbox{O}}-inf5-inf as the sensitive layer). A full characterization of the device was performed with constant ionic strength pH buffer solutions, revealing a sensitivity of 40 mV/pH with small hysteresis, and good linearity in the pH 4-pH 10 range buffer solutions. These results clearly show that it is possible to produce room-temperature disposable and low cost bio-sensors. © 2005-2012 IEEE.