Publications

Export 575 results:
Sort by: Author Title Type [ Year  (Asc)]
2013
b b b b b Figueiredo, V.a b, Pinto Deuermeier Barros Alves Martins Fortunato J. V. a J. "P-Type CuxO thin-film transistors produced by thermal oxidation." IEEE/OSA Journal of Display Technology. 9 (2013): 735-740. AbstractWebsite

Thin-films of copper oxide Cu O were produced by thermal oxidation of metallic copper (Cu) at different temperatures (150-450 C). The films produced at temperatures of 200, 250 and 300 C showed high Hall motilities of 2.2, 1.9 and 1.6 cm V s , respectively. Single Cu O phases were obtained at 200 C and its conversion to CuO starts at 250 C. For lower thicknesses 40 nm, the films oxidized at 250 C showed a complete conversion to CuO phase. Successful thin-film transistors (TFTs) were produce by thermal oxidation of a 20 nm Cu film, obtaining p-type Cu O (at 200 C) and CuO (at 250 C) with On/Off ratios of 6 10 and 1 10 , respectively. © 2005-2012 IEEE.

Martins, R.a, Pereira Fortunato L. b E. c. "Paper electronics: A challenge for the future." Digest of Technical Papers - SID International Symposium. Vol. 44. 2013. 365-367. Abstract

In this paper we report results concerning the use of paper as substrate and as an electronic component for the next generation of sustainable low cost electronic systems, where different examples of applications are given. © 2013 Society for Information Display.

Parthiban, S., Elangovan Nayak Gonçalves Nunes Pereira Barquinha Busani Fortunato Martins E. P. K. "Performances of microcrystalline zinc tin oxide thin-film transistors processed by spray pyrolysis." IEEE/OSA Journal of Display Technology. 9 (2013): 825-831. AbstractWebsite

In this work, we report results concerning the performances of thin-film transistors (TFTs) where the channel layer is based on microcrystalline zinc tin oxide (ZTO) processed by spray pyrolysis technique. TFTs made with 30 nm thick ZTO channel layer deposited at a substrate temperature of 400 C and 300 Cexhibited, respectively, a saturation mobility of 2.9 cm V s and 1.45 cm V s ; voltage of 0.15 V, and 0.2 V; a sub-threshold swing of 400 mV/dec and 500 mV/dec; ON/OFF ratio at the onset of hard saturation current of 3.5 10 and 6 10 , for a drain to source voltage of 10 V (close to or below the gate to source voltage). This indicates that the substrate temperature is relevant in determining the devices' electronic performances. © 2013 IEEE.

Branquinho, R., Pinto Busani Barquinha Pereira Baptista Martins Fortunato J. V. T. "Plastic compatible sputtered ta-inf o sensitive layer for oxide semiconductor tft sensors." IEEE/OSA Journal of Display Technology. 9 (2013): 723-728. AbstractWebsite

The effect of post-deposition annealing temperature on the pH sensitivity of room temperature RF sputtered +{\hbox{Ta}}-{2}{\hbox{O}}5 was investigated. Structural and morphological features of these films were analyzed before and after annealing at various temperatures. The deposited films are amorphous up to 600 +^{\circ}{\hbox{C}}+ and crystallize at 700 +^{\circ}{\hbox{C}}+ in an orthorhombic phase. Electrolyte-insulator- semiconductor (EIS) field effect based sensors with an amorphous +{\hbox{Ta}}-{2}{\hbox{O}}5 sensing layer showed pH sensitivity above 50 mV/pH. For sensors annealed above 200 +^{\circ}{\hbox{C}}+ pH sensitivity decreased with increasing temperature. Stabilized sensor response and maximum pH sensitivity was achieved after low temperature annealing at 200 +^{\circ}{\hbox{C}}+ , which is compatible with the use of polymeric substrates and application as sensitive layer in oxides TFT-based sensors. © 2005-2012 IEEE.

b b b b Ramos, A.M.a b, Pereira Cidade Pereira Branquinho Pereira Martins Fortunato S. a M. T. "Preparation and characterization of cellulose nanocomposite hydrogels as functional electrolytes." Solid State Ionics. 242 (2013): 26-32. AbstractWebsite

In this work Laponite was combined with a modified abundant natural polymer, (caboxymethyl cellulose), acrylic sodium salt polymer and lithium perchlorate aiming to produce inexpensive and sustainable nanocomposite electrolytes for functional electrochemical devices. Optical, electrochemical, structural, morphological and rheological characterization was performed in order to evaluate their properties and potential advantages as electrolyte. It was verified that the addition of Laponite led to an ionic conductivity at room temperature (25 C) in the range of 6 to 9 × 10- 5 Scm - 1 this value being then determined by the composition of the nanocomposite. These electrolytes were applied to electrochromic devices using evaporated nickel oxide thin film as the electrochromic layer. The devices exhibited a significant transmittance modulation that exceeds 45 % at 600 nm. © 2013 Elsevier B.V.

Martins, R.F.P.a, Ahnood Correia Pereira Barros Barquinha Costa Ferreira Nathan Fortunato A. b N. a. "Recyclable, flexible, low-power oxide electronics." Advanced Functional Materials. 23 (2013): 2153-2161. AbstractWebsite

The ability to process and dimensionally scale field-effect transistors with and on paper and to integrate them as a core component for low-power-consumption analog and digital circuits is demonstrated. Low-temperature-processed p- and n-channel integrated oxide thin-film transistors in the complementary metal oxide semiconductor (CMOS) inverter architecture are seamlessly layered on mechanically flexible, low-cost, recyclable paper substrates. The possibility of building these circuits using low-temperature processes opens the door to new applications ranging from smart labels and sensors on clothing and packaging to electronic displays printed on paper pages for use in newspapers, magazines, books, signs, and advertising billboards. Because the CMOS circuits reported constitute fundamental building blocks for analog and digital electronics, this development creates the potential to have flexible form factor computers seamlessly layered onto paper. The holistic approach of merging low-power circuitry with a recyclable substrate is an important step towards greener electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Araújo, A.a, Barros Mateus Gaspar Neves Vicente Filonovich Barquinha Fortunato Ferraria Botelho Do Rego Bicho Águas Martins R. a T. a. "Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells." Science and Technology of Advanced Materials. 14 (2013). AbstractWebsite

We report the effect of a disperse carbon interlayer between the n-a-Si:H layer and an aluminium zinc oxide (AZO) back contact on the performance of amorphous silicon solar cells. Carbon was incorporated to the AZO film as revealed by x-ray photoelectron spectroscopy and energy-dispersive x-ray analysis. Solar cells fabricated on glass substrates using AZO in the back contact performed better when a disperse carbon interlayer was present in their structure. They exhibited an initial efficiency of 11%, open-circuit voltage Voc = 1.6 V, short-circuit current JSC = 11 mA cm -2 and a filling factor of 63%, that is, a 10% increase in the J SC and 20% increase in the efficiency compared to a standard solar cell. © 2013 National Institute for Materials Science.

Ferreira, I.a, Baptista Leitão Soares Fortunato Martins Borges A. C. a J. "Strongly photosensitive and fluorescent F8T2 electrospun fibers." Macromolecular Materials and Engineering. 298 (2013): 174-180. AbstractWebsite

Electrospun fibers of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2) with exceptional electro-optical performance are obtained. The I/T characteristics measured in fibers with 7-15 μm diameter and 1 mm length show a semiconductor behavior; their thermal activation energy is 0.5 eV and the dark conductivity at RT is 5 × 10-9 (Ω cm)-1. Besides exhibiting a photosensitivity of about 60 under white light illumination with a light power intensity of 25 mW · cm-2, the fibers also attain RT photoluminescence in the cyan, yellow, and red wavelength range under ultraviolet, blue, and green light excitation, respectively. Optical microscope images of F8T2 reveal homogeneous electrospun fibers, which are in good agreement with the uniformly radial fluorescence observed. The production of electrospun fibers from poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2) obtained without a carrier polymer is reported. The obtained fibers are shown to have properties suitable for organic fiber photovoltaic and sensors applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Alves, R.D.a, Rodrigues Andrade Pawlicka Pereira Martins Fortunato Silva L. C. a J. "Study and characterization of a novel polymer electrolyte based on agar doped with magnesium triflate." Molecular Crystals and Liquid Crystals. 570 (2013): 1-11. AbstractWebsite

In the present work one host natural matrix - agar - has been doped with magnesium triflate (Mg(CF3SO3)2) with the goal of developing electrolytes for the fabrication of solid-state devices. The resulting samples have been represented by the notation Agar nMg(CF3SO3)2, where n represents the percentage of the magnesium triflate salt proportion in the electrolyte samples. The samples investigated, with n between 0.00% and 37.56%, have been obtained as transparent and thin films. The samples have been characterized by conductivity measurements, thermal analysis, cyclic voltammetry, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The agar-based electrolytes were also tested as ionic conductor in an electrochromic device with the following configuration: glass/indium tin oxide (ITO)/WO 3/agar-based electrolyte/CeO2-TiO2/ITO/glass. © 2013 Copyright Taylor and Francis Group, LLC.

Santos, R., Loureiro Nogueira Elangovan Pinto Veiga Busani Fortunato Martins Ferreira J. A. E. "Thermoelectric properties of V2O5 thin films deposited by thermal evaporation." Applied Surface Science. 282 (2013): 590-594. AbstractWebsite

This work reports the structural, optical, electrical and thermoelectric properties of vanadium pentoxide (V2O5) thin films deposited at room temperature by thermal evaporation on Corning glass substrates. A post-deposition thermal treatment up to 973 K under atmospheric conditions induces the crystallization of the as-deposited amorphous films with an orthorhombic V2O5 phase with grain sizes around 26 nm. As the annealing temperature rises up to 773 K the electrical conductivity increases. The films exhibit thermoelectric properties with a maximum Seebeck coefficient of -218 μV/K and electrical conductivity of 5.5 (Ω m) -1. All the films show NIR-Vis optical transmittance above 60% and optical band gap of 2.8 eV. © 2013 Elsevier B.V. All rights reserved.

Bahubalindruni, P.G.a, Tavares Barquinha Duarte De Oliveira Martins Fortunato V. G. a P. "Transparent current mirrors with a-GIZO TFTs: Neural modeling, simulation and fabrication." IEEE/OSA Journal of Display Technology. 9 (2013): 1001-1006. AbstractWebsite

This paper characterizes transparent current mirrors with n-type amorphous gallium-indium-zinc-oxide (a-GIZO) thin-film transistors (TFTs). Two-TFT current mirrors with different mirroring ratios and a cascode topology are considered. A neural model is developed based on the measured data of the TFTs and is implemented in Verilog-A; then it is used to simulate the circuits with Cadence Virtuoso Spectre simulator. The simulation outcomes are validated with the fabricated circuit response. These results show that the neural network can model TFT accurately, as well as the current mirroring ability of the TFTs. © 2005-2012 IEEE.

Danciu, A.-I..a b, Musat Busani Pinto Barros Maria Rego Maria Ferraria Carvalho Martins Fortunato V. a T. b. "Uniform arrays of ZnO 1D nanostructures grown on Al:ZnO seeds layers by hydrothermal method." Journal of Nanoscience and Nanotechnology. 13 (2013): 6701-6710. AbstractWebsite

In obtaining uniform array of ZnO 1D nanostructures, especially using solution based methods, the thickness and the morphology of the epitaxial seeds layer are very important. The paper presents the effect of the thickness and the morphology of the Al:ZnO seeds layer on the morphology and properties of ZnO nanowires array grown by hydrothermal method. Compact and vertically aligned ZnO 1D nanostructures were obtained. Concentration of 0.02 M of zinc nitrate was found to be optimal for growing nanowires with diameters up to 50 nm and lengths between 1.5 and 2.5 microns. Using 0.04 M solution, nanorods with diameter between 50 and 100 nm were obtained. The correlation between the crystal structure and optical properties of ZnO nanowires is discussed. From electrical measurements on single nanowire, resistivity value of 9×10?2 cm was obtained. The I-V curves of single ZnO NWs show quasi diode characteristic when an e-beam is irradiating the NWs, and a typical semiconductive behaviour when the e-beam is turned off. Copyright © 2013 American Scientific Publishers.

2014
b b b b d b b Contreras, J.a b, Martins Wojcik Filonovich Aguas Gomes Fortunato Ferreira R. a P. a. "Color sensing ability of an amorphous silicon position sensitive detector array system." Sensors and Actuators, A: Physical. 205 (2014): 26-37. AbstractWebsite

The color sensing ability of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) was analyzed. Besides being used to reproduce a 3D profile of highly reflective surfaces, here we show that it can also differentiate primary red, green, blue (RGB) and derived colors. This was realized by using an incident beam with a RGB color combination and adequate integration times taking into account that a color surface mostly reflects its corresponding color. A mean colorimetric error of 25.7 was obtained. Overall, we show that color detection is possible via the use of this sensor array system, composed by a simpler amorphous silicon pin junction. © 2013 Elsevier B.V. All rights reserved.

b d Morawiec, S.a b, Mendes Filonovich Mateus Mirabella Aguas Ferreira Simone Fortunato Martins Priolo Crupi M. J. a S. "Photocurrent enhancement in thin a-Si:H solar cells via plasmonic light trapping." Conference on Lasers and Electro-Optics Europe - Technical Digest. Vol. 2014-January. 2014. Abstract

Photocurrent enhancement in thin a-Si:H solar cells due to the plasmonic light trapping is investigated, and correlated with the morphology and the optical properties of the selfassembled silver nanoparticles incorporated in the cells' back reflector. © 2014 Optical Society of America.

Bahubalindruni, P.a, Tavares Duarte Cardoso Oliveira Barquinha Martins Fortunato V. a C. a. "Transparent current mirrors using A-GIZO TFTs: Simulation with RBF models and fabrication." Proceedings - UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, UKSim 2014. 2014. 582-586. Abstract

This paper analyzes transparent two-TFT current mirrors using a-GIZO TFTs with different mirroring ratios. In order to achieve a high mirroring ratio, the output TFT in the circuit employed a fingered structure layout to minimize area and overlap capacitance. The analysis of the current mirrors is performed in three phases. In the first, a radial basis function based (RBF) model is developed using measured data from fabricated TFTs on the same chip. Then, in the second phase, the RBF model is implemented in Verilog-A that is used to simulate two-TFT current mirrors with different mirroring ratios. The simulations are carried out using Cadence spectre simulator. In the third phase, simulation results are validated with the measured response from the fabricated circuits. © 2014 IEEE.

2015
Bahubalindruni, P.G.a, Tavares Barquinha Duarte Cardoso De Oliveira Martins Fortunato V. G. a P. "A-GIZO TFT neural modeling, circuit simulation and validation." Solid-State Electronics. 105 (2015): 30-36. AbstractWebsite

Development time and accuracy are measures that need to be taken into account when devising device models for a new technology. If complex circuits need to be designed immediately, then it is very important to reduce the time taken to realize the model. Solely based on data measurements, artificial neural networks (ANNs) modeling methodologies are capable of capturing small and large signal behavior of the transistor, with good accuracy, thus becoming excellent alternatives to more strenuous modeling approaches, such as physical and semi-empirical. This paper then addresses a static modeling methodology for amorphous Gallium-Indium-Zinc-Oxide - Thin Film Transistor (a-GIZO TFT), with different ANNs, namely: multilayer perceptron (MLP), radial basis functions (RBF) and least squares-support vector machine (LS-SVM). The modeling performance is validated by comparing the model outcome with measured data extracted from a real device. In case of a single transistor modeling and under the same training conditions, all the ANN approaches revealed a very good level of accuracy for large- and small-signal parameters (gm and gd), both in linear and saturation regions. However, in comparison to RBF and LS-SVM, the MLP achieves a very acceptable degree of accuracy with lesser complexity. The impact on simulation time is strongly related with model complexity, revealing that MLP is the most suitable approach for circuit simulations among the three ANNs. Accordingly, MLP is then extended for multiple TFTs with different aspect ratios and the network implemented in Verilog-A to be used with electric simulators. Further, a simple circuit (inverter) is simulated from the developed model and then the simulation outcome is validated with the fabricated circuit response. © 2014 Elsevier Ltd . All rights reserved.

Bahubalindruni, P.G.a, Silva Tavares Barquinha Cardoso Guedes De Oliveira Martins Fortunato B. a V. G. "Analog circuits with high-gain topologies using a-GIZO TFTs on glass." IEEE/OSA Journal of Display Technology. 11 (2015): 547-553. AbstractWebsite

This paper presents analog building blocks that find potential applications in display panels. A buffer (source-follower), subtractor, adder, and high-gain amplifier, employing only n-type enhancement amorphous gallium-indium-zinc-oxide thin-film transistors (a-GIZO TFTs), were designed, simulated, fabricated, and characterized. Circuit simulations were carried out using a neural model developed in-house from the measured characteristics of the transistors. The adder-subtractor circuit presents a power consumption of 0.26 mW, and the amplifier presents a gain of 34 dB and a power consumption of 0.576 mW, with a load of 10 MΩ16 pF. To the authors' knowledge, this is the highest gain reported so far for a single-stage amplifier with a-GIZO TFT technology. © 2015 IEEE.

c c d Mendes, M.J.a b, Morawiec Mateus Lyubchyk Águas Ferreira Fortunato Martins Priolo Crupi S. b T. a. "Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids." Nanotechnology. 26 (2015). AbstractWebsite

The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells' front surface formed from the deposition of material over the spherically shaped colloids. © 2015 IOP Publishing Ltd.

Ullaha, S.a, De Matteis Branquinho Fortunato Martins Davoli F. a R. b. "A combination of solution synthesis & solution combustion synthesis for highly conducting and transparent Aluminum Zinc Oxide thin films." IEEE-NANO 2015 - 15th International Conference on Nanotechnology. 2015. 144-147. Abstract

Aluminum Zinc Oxide has been extensively investigated as a cheap alternative to transparent conducting tin oxide films for electronic and optoelectronic applications. Thin films of Aluminum Zinc Oxide have been developed successfully through a combination of solution combustion synthesis and solution synthesis. Zn(NO3)3·6H2O as metal source was dissolved in 2-methoxyethanol as solvent through combustion synthesis with Urea as fuel while dopant source of AlCl3·6H2O was mixed separately in solvent to avoid aluminum oxide formation in the films. Precursor solutions were obtained mixing Zn & Al separate solutions in 9:1, 8:2, and 7:3 ratios respectively with oxide, fuel and dopant concentrations of 0.5, 0.25, 0.1, and 0.05 M. The film stacks have been prepared through spin-coating with heating at 400°C for 10 minutes after each deposition to remove residuals and evaporate solvents. Thermal annealing in oven at 600°C for 1 hour followed by rapid thermal annealing at 500°C & 600°C first in vacuum and then in N2-5%H2 environment respectively for 10 minutes each reduced the resistivity of film stacks. Film stack with 10 layers for an average thickness of 0.5μm gave the best Hall Effect resistivity of 3.2 × 10-2 -cm in the case of 0.5M solution with Zn:Al mixing ratio of 9:1 for RTA annealings at 600°C with an average total transparency of 80 % in the wavelength range of 400-1200 nm. The results show a clear trend that increasing the amount of ingredients resistivity could further be decreased. © 2015 IEEE.

G-Berasategui, E.a, Bayón Zubizarreta Barriga Barros Martins Fortunato R. a C. a. "Corrosion resistance analysis of aluminium-doped zinc oxide layers deposited by pulsed magnetron sputtering." Thin Solid Films. 594 (2015): 256-260. AbstractWebsite

In this paper an exhaustive analysis is performed on the electrochemical corrosion resistance of Al-doped ZnO (AZO) layers deposited on silicon wafers by a DC pulsed magnetron sputtering deposition technique to test layer durability. Pulse frequency of the sputtering source was varied and a detailed study of the electrochemical corrosion response of samples in the presence of a corrosive chloride media (NaCl 0.06 M) was carried out. Electrochemical impedance spectroscopy measurements were performed after reaching a stable value of the open circuit at 2 h, 192 h and 480 h intervals. Correlation of the corrosion resistance properties with the morphology, and the optical and electrical properties was tested. AZO layers with transmission values higher than 84% and resistivity of 6.54 × 10- 4 â. cm for a deposition process pressure of 3 × 10- 1 Pa, a sputtering power of 2 kW, a pulse frequency of 100 kHz, with optimum corrosion resistance properties, were obtained. © 2015 Elsevier B.V.

Correia, A.a b, Martins Fortunato Barquinha Goes R. a E. a. "Design of a robust general-purpose low-offset comparator based on IGZO thin-film transistors." Proceedings - IEEE International Symposium on Circuits and Systems. Vol. 2015-July. 2015. 261-264. Abstract

This paper presents a low-offset comparator based on n-type amorphous indium gallium zinc oxide thin-film transistors (TFTs). An a-Si:H TFT model was adapted to fit the electrical characterization data obtained for these devices. The proposed comparator comprises three pre-amplification stages, a positive-feedback analog latch and a fully dynamic digital latch. Simulation results show that the proposed circuit can work at several tens of kHz, with an accuracy of the order of 10 mV, considering a supply voltage of 10 V and a current consumption of 380 μA. Monte-Carlo simulations exhibit a 1-sigma random offset voltage smaller than 10 mV and 40 mV, respectively, with and without using autozeroing techniques. © 2015 IEEE.

Baptista, A.C.a, Botas Almeida Nicolau Falcão Soares Leitão Martins Borges Ferreira A. M. b A. "Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers." Optical Materials. 39 (2015): 278-281. AbstractWebsite

The influence of Ag nanoparticles (Ag NPs) on the luminescence of electrospun nonwoven mats made of polyvinylpyrrolidone (PVP) has been studied in this work. The PVP fibers incorporating 2.1-4.3 nm size Ag NPs show a significant photoluminescence (PL) band between 580 and 640 nm under 325 nm laser excitation. The down conversion luminescence emission is present even after several hours of laser excitation, which denotes the durability and stability of fibers to consecutive excitations. As so these one-dimensional photonic fibers made using cheap methods is of great importance for organic optoelectronic applications, fluorescent clothing or counterfeiting labels. © 2014 Elsevier B.V. All rights reserved.

Pimentel, A.a, Rodrigues Duarte Nunes Costa Monteiro Martins Fortunato J. b P. a. "Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study." Journal of Materials Science. 50 (2015). AbstractWebsite

Abstract: The present work reports the synthesis of zinc oxide (ZnO) nanoparticles with hexagonal wurtzite structure considering a solvothermal method assisted by microwave radiation and using different solvents: water (H2O), 2-ethoxyethanol (ET) and ethylene glycol (EG). The structural characterization of the produced ZnO nanoparticles has been accessed by scanning electron microscopy, X-ray diffraction, room-temperature photoluminescence and Raman spectroscopies. Different morphologies have been obtained with the solvents tested. Both H2O and ET resulted in rods with high aspect ratio, while EG leads to flower-like structure. The UV absorption spectra showed peaks with an orange shift for synthesis with H2O and ET and blue shift for synthesis with EG. The different synthesized nanostructures were tested for photocatalyst applications, revealing that the ZnO nanoparticles produced with ET degrade faster the molecule used as model dye pollutant, i.e. methylene blue. Graphical Abstract: [Figure not available: see fulltext.] © 2015 Springer Science+Business Media New York

Gaspar, D.a, Pereira Delattre Guerin Fortunato Martins L. a A. b. "Engineered cellulose fibers as dielectric for oxide field effect transistors." Physica Status Solidi (C) Current Topics in Solid State Physics. 12 (2015): 1421-1426. AbstractWebsite

When thinking on low cost and sustainable electronic systems, paper can be considered as an interesting option to be used as substrate but also as a component of such systems. In this work we have tailored paper samples that were used simultaneously as physical support and dielectric in oxide based paper field effect transistors (FETs). It was observed that the gate leakage current in these devices depends directly from fibril's dimension and arrangement, being lower for micro/nano fibrillated cellulose paper. Moreover, extra ionic charge added to the paper during its production results in the improvement of FETs' electrical properties, with saturation mobility of 16 cm 2V -1s -1 and on/off current ratio close to 105. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Barquinha, P., Pereira Pereira Wojcik Grey Martins Fortunato S. L. P. "Flexible and Transparent WO3 Transistor with Electrical and Optical Modulation." Advanced Electronic Materials. 1 (2015). AbstractWebsite
n/a