Publications

Export 575 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
Gonçalves, G.a, Grasso Barquinha Pereira Elamurugu Brignone Martins Lambertini Fortunato V. b P. a. "Role of room temperature sputtered high conductive and high transparent indium zinc oxide film contacts on the performance of orange, green, and blue organic light emitting diodes." Plasma Processes and Polymers. 8 (2011): 340-345. AbstractWebsite

The core of this paper concerns the use of an amorphous transparent conductive oxide (a-TCO), whose performance is on par with the classical indium tin oxide (ITO) films as a transparent contact in organic light emitting diodes (OLEDs). The main advantage of indium zinc oxide (IZO) films relies on their amorphous structure and high mobility that turns them likely to be used with high conductivity and high transmittance even at the infrared region. The mobility of IZO films (47.8 cm2 · V-1 · s-1) surpasses the one exhibited by ITO films (26.4 cm2 · V-1 · s-1), which along with its smoother surface and better current distribution plays an important role on OLEDs performance. Besides their similar turn-on voltage, the devices using IZO anodes exhibit higher power efficiency than the ITO ones, which is 66, 18, and 62% for orange, green, and blue OLEDs, respectively. These results suggest that IZO can potentially be applied as an anode in full color displays based on OLEDs. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Goņalves, G.a, Barquinha Pereira Franco Alves Martins Fortunato P. a L. b. "High mobility a-IGO films produced at room temperature and their application in TFTs." Electrochemical and Solid-State Letters. 13 (2009): H20-H22. AbstractWebsite

The effect of oxygen partial pressure on the properties of In2 O3 - Ga2 O3 thin films produced by sputtering at room temperature aimed at thin film transistor (TFT) application is reported in this work. When produced in the absence of oxygen, the films are polycrystalline, while in the presence of oxygen, the films are amorphous. The films' resistivity is tuned between 10-3 and 104 γ cm. Moreover, the films present a high transmittance (> 80%) and a smooth surface (rrms =1.2 nm). The high performance as-produced transistors present high saturation mobility (μsat ≈43 cm2 /V s) and a subthreshold gate-voltage swing of 0.51 V/dec, which is reduced to 0.27 V/dec after 150°C annealing. © 2009 The Electrochemical Society.

Golshahi, S.a, Rozati Martins Fortunato S. M. a R. "P-type ZnO thin film deposited by spray pyrolysis technique: The effect of solution concentration." Thin Solid Films. 518 (2009): 1149-1152. AbstractWebsite

The aim of this research is to study the role of concentration variations on precursor solution of nitrogen doped ZnO (ZnO:N) thin films which has been prepared by spray pyrolysis technique. SEM micrographs show that ZnO:N films in 0.1 ML concentration have a mono-disperse surface with nano-spheres of 50 nm in diameter. In higher molarities the nano-spheres agglomerate leading to particle formation. For 0.4 ML concentrations this change is observed, where plume like particles are seen over the surface of ZnO:N thin film. This change corresponds also to changes observed in the XRD spectra, where crystal orientation of ZnO:N thin films changes from (002) to (100). All of the ZnO:N thin films have kept their sharp ultra violet absorption edge, but the transparency in visible spectra region decreases as the molarities in precursor solution increase. Photoluminescence spectra at room temperature revealed emissions at 2.33 eV, 2.54 eV and 3.16 eV that can be attributed to the presence of nitrogen in ZnO structure. We also observe that all samples analyzed show a p-type Hall effect behavior, and that as the molarities in the precursor solution increase, the electrical resistivity of the films decreases, due to an enhancement of free carriers, while the mobility decreases. These data prove the capability of spray pyrolysis as a viable technique in preparing p-type TCO materials and so, fully transparent CMOS-like devices. © 2009 Elsevier B.V. All rights reserved.

Golshahi, S.a, Rozati Botelho Do Rego Wang Elangovan Martins Fortunato S. M. b A. "Effect of substrate temperature on the properties of pyrolytically deposited nitrogen-doped zinc oxide thin films." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 178 (2013): 103-108. AbstractWebsite

The effect of substrate temperature (Ts) on the properties of pyrolytically deposited nitrogen (N) doped zinc oxide (ZnO) thin films was investigated. The Ts was varied from 300 °C to 500 °C, with a step of 50 °C. The positive sign of Hall coefficient confirmed the p-type conductivity in the films deposited at 450 °C and 500 °C. X-ray diffraction studies confirmed the ZnO structure with a dominant peak from (1 0 0) crystal plane, irrespective of the variation in Ts. The presence of N in the ZnO structure was evidenced through X-ray photoelectron spectroscopy (XPS) analysis. The obtained high N concentration reveals that the 450 °C is the optimal Ts. Atomic force microscope (AFM) analysis showed that the surface roughness was increased with the increasing Ts until 400 °C but then decreased. It is found that the transmittance of the deposited films is increased with the increasing Ts. The optical band gap calculated from the absorption edge showed that the films deposited with T s of 300 °C and 350 °C possess higher values than those deposited at higher Ts. © 2012 Elsevier B.V.

c Gokulakrishnan, V.a, Parthiban Elangovan Ramamurthi Jeganathan Kanjilal Asokan Martins Fortunato S. a E. c. "Effects of O7+ swift heavy ion irradiation on indium oxide thin films." Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. 269 (2011): 1836-1840. AbstractWebsite

Indium oxide thin films deposited by spray pyrolysis were irradiated by 100 MeV O7+ ions with different fluences of 5 × 1011, 1 × 1012 and 1 × 1013 ions/cm2. X-ray diffraction analysis confirmed the structure of indium oxide with cubic bixbyite. The strongest (2 2 2) orientation observed from the as-deposited films was shifted to (4 0 0) after irradiation. Furthermore, the intensity of the (4 0 0) orientation was decreased with increasing fluence together with an increase in (2 2 2) intensity. Films irradiated with maximum fluence exhibited an amorphous component. The mobility of the as-deposited indium oxide films was decreased from ∼78.9 to 43.0 cm2/V s, following irradiation. Films irradiated with a fluence of 5 × 1011 ions/cm2 showed a better combination of electrical properties, with a resistivity of 4.57 × 10-3 Ω cm, carrier concentration of 2.2 × 1019 cm-3 and mobility of 61.0 cm2/V s. The average transmittance obtained from the as-deposited films decreased from ∼81% to 72%, when irradiated with a fluence of 5 × 1011 ions/cm2. The surface microstructures confirmed that the irregularly shaped grains seen on the surface of the as-deposited films is modified as "radish-like" morphology when irradiated with a fluence of 5 × 1011 ions/cm2. © 2011 Elsevier B.V. All rights reserved.

c Gokulakrishnan, V.a, Parthiban Elangovan Jeganathan Kanjilal Asokan Martins Fortunato Ramamurthi S. a E. c. "Investigation of O 7+ swift heavy ion irradiation on molybdenum doped indium oxide thin films." Radiation Physics and Chemistry. 81 (2012): 589-593. AbstractWebsite

Molybdenum (0.5at%) doped indium oxide thin films deposited by spray pyrolysis technique were irradiated by 100MeV O 7+ ions with different fluences of 5×10 11, 1×10 12 and 1×10 13ions/cm 2. Intensity of (222) peak of the pristine film was decreased with increase in the ion fluence. Films irradiated with the maximum ion fluence of 1×10 13ions/cm 2 showed a fraction of amorphous nature. The surface microstructures on the surface of the film showed that increase in ion fluence decreases the grain size. Mobility of the pristine molybdenum doped indium oxide films was decreased from  122 to 48cm 2/Vs with increasing ion fluence. Among the irradiated films the film irradiated with the ion fluence of 5×10 11ions/cm 2 showed relatively low resistivity of 6.7×10 -4Ωcm with the mobility of 75cm 2/Vs. The average transmittance of the as-deposited IMO film is decreased from 89% to 81% due to irradiation with the fluence of 5×10 11ions/cm 2. © 2012 Elsevier Ltd.

Gaspar, D.a, Pereira Delattre Guerin Fortunato Martins L. a A. b. "Engineered cellulose fibers as dielectric for oxide field effect transistors." Physica Status Solidi (C) Current Topics in Solid State Physics. 12 (2015): 1421-1426. AbstractWebsite

When thinking on low cost and sustainable electronic systems, paper can be considered as an interesting option to be used as substrate but also as a component of such systems. In this work we have tailored paper samples that were used simultaneously as physical support and dielectric in oxide based paper field effect transistors (FETs). It was observed that the gate leakage current in these devices depends directly from fibril's dimension and arrangement, being lower for micro/nano fibrillated cellulose paper. Moreover, extra ionic charge added to the paper during its production results in the improvement of FETs' electrical properties, with saturation mobility of 16 cm 2V -1s -1 and on/off current ratio close to 105. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Gaspar, D.a, Pimentel Mateus Leitão Soares Falcão Araújo Vicente Filonovich Águas Martins Ferreira A. C. a T. "Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation." Scientific Reports. 3 (2013). AbstractWebsite

Metallic nanoparticles (NPs) have received recently considerable interest of photonic and photovoltaic communities. In this work, we report the optoelectronic properties of gold NPs (Au-NPs) obtained by depositing very thin gold layers on glass substrates through thermal evaporation electron-beam assisted process. The effect of mass thickness of the layer was evaluated. The polycrystalline Au-NPs, with grain sizes of 14 and 19 nm tend to be elongated in one direction as the mass thickness increase. A 2 nm layer deposited at 250 C led to the formation of Au-NPs with 10-20 nm average size, obtained by SEM images, while for a 5 nm layer the wide size elongates from 25 to 150 nm with a mean at 75 nm. In the near infrared region was observed an absorption enhancement of amorphous silicon films deposited onto the Au-NPs layers with a corresponding increase in the PL peak for the same wavelength region.

G-Berasategui, E.a, Bayón Zubizarreta Barriga Barros Martins Fortunato R. a C. a. "Corrosion resistance analysis of aluminium-doped zinc oxide layers deposited by pulsed magnetron sputtering." Thin Solid Films. 594 (2015): 256-260. AbstractWebsite

In this paper an exhaustive analysis is performed on the electrochemical corrosion resistance of Al-doped ZnO (AZO) layers deposited on silicon wafers by a DC pulsed magnetron sputtering deposition technique to test layer durability. Pulse frequency of the sputtering source was varied and a detailed study of the electrochemical corrosion response of samples in the presence of a corrosive chloride media (NaCl 0.06 M) was carried out. Electrochemical impedance spectroscopy measurements were performed after reaching a stable value of the open circuit at 2 h, 192 h and 480 h intervals. Correlation of the corrosion resistance properties with the morphology, and the optical and electrical properties was tested. AZO layers with transmission values higher than 84% and resistivity of 6.54 × 10- 4 â. cm for a deposition process pressure of 3 × 10- 1 Pa, a sputtering power of 2 kW, a pulse frequency of 100 kHz, with optimum corrosion resistance properties, were obtained. © 2015 Elsevier B.V.

F
Fortunato, E., Correia Barquinha Pereira Goncalves Martins N. P. L. "High-performance flexible hybrid field-effect transistors based on cellulose fiber paper." IEEE Electron Device Letters. 29 (2008): 988-990. AbstractWebsite

In this letter, we report for the first time the use of a sheet of cellulose-fiber-based paper as the dielectric layer used in oxide-based semiconductor thin-film field-effect transistors (FETs). In this new approach, we are using the cellulose-fiber-based paper in an "interstrate"structure since the device is built on both sides of the cellulose sheet. Such hybrid FETs present excellent operating characteristics such as high channel saturation mobility (> 30 cm2Vs), drain-source current on/off modulation ratio of approximately 104, near-zero threshold voltage, enhancement n-type operation, and subthreshold gate voltage swing of 0.8 V/decade. The cellulose-fiber-based paper FETs' characteristics have been measured in air ambient conditions and present good stability, after two months of being processed. The obtained results outpace those of amorphous Si thin-film transistors (TFTs) and rival with the same oxide-based TFTs produced on either glass or crystalline silicon substrates. The compatibility of these devices with large-scale/large-area deposition techniques and low-cost substrates as well as their very low operating bias delineates this as a promising approach to attain high-performance disposable electronics like paper displays, smart labels, smart packaging, RFID, and point-of-care systems for self-analysis in bioapplications, among others. © 2008 IEEE.

Fortunato, E., Barquinha Pereira Gonçalves Martins P. L. G. "Multicomponent wide band gap oxide semiconductors for thin film transistors." Proceedings of International Meeting on Information Display. Vol. 2006. 2006. 605-608. Abstract

The recent application of wide band gap oxide semiconductors to transparent thin film transistors (TTFTs) is making a fast and growing (r)evolution on the contemporary solid-state electronics. In this paper we present some of the recent results we have obtained using wide band gap oxide semiconductors, like indium zinc oxide, produced by rf sputtering at room temperature. The devices work in the enhancement mode and exhibit excellent saturation drain currents. On-off ratios above 106 are achieved. The optical transmittance data in the visible range reveals average transmittance higher than 80%, including the glass substrate. Channel mobilities are also quite respectable, with some devices presenting values around 25 cm2/Vs, even without any annealing or other post deposition improvement processes. The high performances presented by these TTFTs associated to a high electron mobility, at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and a low threshold voltage, opens new doors for applications in flexible, wearable, disposable portable electronics as well as battery-powered applications.

Fortunato, E., Gonçalves Marques Assunção Ferreira Águas Pereira Martins A. A. V. "Gallium zinc oxide coated polymeric substrates for optoelectronic applications." Materials Research Society Symposium - Proceedings. Vol. 769. 2003. 291-296. Abstract

Highly transparent and conductive ZnO:Ga thin films were produced by rf magnetron sputtering at room temperature on polyethylene naphthalate substrates. The films present a good electrical and optical stability, surface uniformity and a very good adhesion to the polymeric substrates. The lowest resistivity obtained was 5×10-4 Ωcm with a sheet resistance of 15 Ω/sqr and an average optical transmittance in the visible part of the spectra of 80%. It was also shown that by passivating the polymeric surface with a thin SiO2 layer, the electrical and structural properties of the films are improved nearly by a factor of 2.

Fortunato, E.M.C., Brida Ferreira Águas Nunes Cabrita Giuliani Nunes Maneira Martins D. I. M. M. "Large area flexible amorphous silicon position sensitive detectors." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A1271-A1276. Abstract

Large area thin film position sensitive detectors based on amorphous silicon technology have been prepared on polyimide substrates using the conventional plasma enhanced chemical vapour deposition technique. The sensors have been characterised by spectral response, illuminated I-V characteristics and position detectability measurements. The obtained one dimensional position sensors with 5 mm wide and 60 mm long present a maximum spectral response at 600 nm, an open circuit voltage of 0.6 V° and a position detectability with a correlation of 0.9989 associated to a standard deviation of 1 × 10-2, comparable to those ones produced on glass substrates. The surface of the sensors at each stage of fabrication was investigated by Atomic Force Microscopy.

Fortunato, E., Gonçalves Pimentel Barquinha Gonçalves Pereira Ferreira Martins A. A. P. "Zinc oxide, a multifunctional material: From material to device applications." Applied Physics A: Materials Science and Processing. 96 (2009): 197-205. AbstractWebsite

In this paper we report on some of the recent advances in transparent thin film oxide semiconductors, specifically zinc oxide produced by radio frequency magnetron sputtering at room temperature, with multifunctional properties. By controlling the deposition parameters it is possible to produce undoped material with electronic semiconductor properties, or by doping it to get either n-type or p-type semiconductor behavior. In this work we refer to our experience in producing n-type doped zinc oxide as transparent electrode to be used in optoelectronic applications such as solar cells and position sensitive detectors, while the undoped zinc oxide can be used as active layer of fully transparent thin film transistors. © 2009 Springer-Verlag.

Fortunato, E.a, Pereira Barquinha Botelho Do Rego Gongalves Vilà Morante Martins L. a P. a. "High mobility indium free amorphous oxide based thin film transistors." Proceedings of International Meeting on Information Display. Vol. 8. 2008. 1199-1202. Abstract

High mobility bottom gate thin film transistors (TFTs) with an amorphous gallium tin zinc oxide (a-GSZO) channel layer have been produced by rf magnetron cosputtering using a gallium zinc oxide (GZO) and tin (Sn) targets. The effect of the post annealing temperatures (200 °C, 250 °C and 300 °C) was evaluated and compared with two series of TFTs produced at room temperature and 150 °C during the channel deposition. From the results it was observed that the effect ofpos annealing is crucial for both series of TFTs either for stability as well as for improving the electrical characteristics. The a-GSZO TFTs operate in the enhancement mode (n-type), present a high saturation mobility of 24.6 cm2/Vs, a subthreshold gate swing voltage of 0.38 V/decade, a turn-on voltage of -0.5 V, a threshold voltage of 4.6 V and an ION/IOFF ratio of 8x107, satisfying all the requirements to be used in active-matrix backplane.

Fortunato, Elvira, Malik Alexander Martins Rodrigo. "Photochemical sensors based on amorphous silicon thin films." Sensors and Actuators, B: Chemical. B46 (1998): 202-207. AbstractWebsite

Hydrogenated amorphous silicon photochemical sensors based on Pd metal/insulator/semiconductor (Pd-MIS) structures were produced by plasma enhanced chemical vapour deposition (PECVD) with two different oxidized surfaces (thermal and chemical oxidation). The behaviour of dark and illuminated current-voltage characteristics in air and in the presence of a hydrogen atmosphere is explained by the changes induced by the gases adsorbed, in the work function of the metal, modifying the electrical properties of the interface. The photochemical sensors produced present more than two orders of magnitude variation on the reverse dark current in the presence of 400 ppm hydrogen. When the sensors are submitted to light it corresponds a decrease of 45% on the open circuit voltage.

Fortunato, E., Lavareda Scares Martins G. F. R. "Performances presented by large-area thin film position-sensitive detectors based on amorphous silicon." Thin Solid Films. 272 (1996): 148-156. AbstractWebsite

This paper presents a low-cost technology for the realisation of large-area thin film position-sensitive detectors using the a-Si:H technology. The obtained results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems, such as: machine tool alignment and control; angle measuring; rotation monitoring; surface profiling; medical instrumentation; targeting; remote optical alignment; guidance systems; etc., to which automated inspection control is needed.

Fortunato, E., Nunes Costa Brida Ferreira Martins P. D. D. "Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates." Vacuum. 64 (2002): 233-236. AbstractWebsite

We report, for the first time, results on transparent ZnO:Al thin films deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by magnetron sputtering. The structural, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (0 0 2) perpendicular to the substrate surface. The ZnO:Al thin films with 83% transmittance in the visible region and a resistivity as low as 3.6 × 10-2 Ωcm have been obtained, as deposited. The obtained results are comparable to those obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices. © 2002 Elsevier Science Ltd. All rights reserved.

Fortunato, E.a, Lavareda Vieira Martins Ferreira G. a M. a. "Application of thin film technology to optical sensors." Vacuum. 45 (1994): 1151-1154. AbstractWebsite

In this paper we present results of PIN single and dual axis Thin Film Position Sensitive Detectors (TFPSD) based on hydrogenated amorphous silicon (a-Si:H) technology, with a wide detection area (up to 80 × 80 mm). These sensors provide an alternative to Charge Coupled Devices (CCDs) when large inspection areas are needed, under a requirement to use simpler technology. In this paper we analyse the forward and reverse I-V characteristics in the dark and under illumination, as well as the device linearity of TFPSD. © 1994.

Fortunato, E., Martins R. "Role of the collecting resistive layer on the static characteristics of 2D a-Si:H thin film position sensitive detector." Materials Research Society Symposium - Proceedings. Vol. 507. 1999. 303-308. Abstract

The aim of this work is to present an analytical model able to interpret the role of the thin collecting resistive layer on the static performances exhibited by 2D amorphous silicon hydrogenated pin thin film position sensitive detectors. In addition, experimental results concerning the device linearity and spatial resolution are presented and checked against the predicted values of the analytical model proposed.

Fortunato, E., Barquinha Gonçalves Pereira Martins P. G. L. "New amorphous oxide semiconductor for thin film transistors (TFTs)." Materials Science Forum. 587-588 (2008): 348-352. AbstractWebsite

Thin film transistors (TFTs) have been produced by rf magnetron sputtering at room temperature, using non conventional oxide materials like amorphous indium-zinc-oxide (IZO) semiconductor, for the channel as well as for the drain and source regions. The obtained TFTs operate in the enhancement mode with threshold voltages of 2.4 V, saturation mobility of 22.7 cm2/Vs, gate voltage swing of 0.44 V/dec and an ON/OFF current ratio of 7×10 7. The high performances presented by these TFTs associated to a high electron mobility, at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and a low threshold voltage, opens new doors for applications in flexible, wearable, disposable portable electronics as well as battery-powered applications.

Fortunato, E., Soares Lavareda Martins F. G. R. "Thin films applied to integrated optical position-sensitive detectors." Thin Solid Films. 317 (1998): 421-424. AbstractWebsite

We have developed a linear thin film position-sensitive detector with 128 elements, based on p.i.n. a-Si:H devices. The incorporation of this sensor into an optical inspection camera makes possible the acquisition of three-dimensional information of an object, using laser triangulation methods. The main advantages of this system, when compared with the conventional charge-coupled devices, are the low complexity of hardware and software used, and that the information can be continuously processed (analogic detection). In this paper, we present the most significant characteristics of the singular one-dimensional thin film position-sensitive detectors that form part of the linear array with 128 sensors. © 1998 Elsevier Science S.A.

Fortunato, E.a, Gonçalves Marques Viana Águas Pereira Ferreira Vilarinho Martins A. a A. a. "New developments in gallium doped zinc oxide deposited on polymeric substrates by RF magnetron sputtering." Surface and Coatings Technology. 180-181 (2004): 20-25. AbstractWebsite

Gallium-doped zinc oxide (GZO) thin films have been deposited onto polyethylene naphthalate (PEN) substrates by r.f. magnetron sputtering at room temperature. The influence of the film thickness (from 70 to 890 nm) on the electrical, structural and morphological properties are presented. The lowest resistivity obtained was 5 × 10-4 Ω cm with a Hall mobility of 13.7 cm2/Vs and a carrier concentration of 8.6 × 1020 cm-3. These values were obtained by passivating the surface of the polymer with a thin silicon dioxide, so preventing the moisture and oxygen permeation inside the film. © 2003 Elsevier B.V. All rights reserved.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Godinho Almeida Borges Martins P. a A. a. "Influence of the strain on the electrical resistance of zinc oxide doped thin film deposited on polymer substrates." Advanced Engineering Materials. 4 (2002): 610-612. AbstractWebsite

Tensile tests were performed on PET films coated with Al doped zinc oxide films by RF magnetron sputtering. During the tensile elongation, the electrical resistance of the oxide was evaluated in situ. The results indicate that the increase in the electrical resistance is related to the crack debsity and crack width, which also depends on the film thickness.

Fortunato, E., Martins R. "How materials innovations will lead to device revolution?" 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2015. 2015. 884-887. Abstract

Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. The key components are wide band gap semiconductors, where oxides of different origin play an important role, not only as passive component but also as active component, similar to what we observe in conventional semiconductors like silicon. In this paper we present the recent progress in n- and p-type oxide based thin film transistors (TFT) produced by rf magnetron sputtering and we will summarize the major milestones already achieved with this emerging and very promising technology. © 2015 IEEE.