Morawiec, S., MJ Mendes, F. Priolo, and I. Crupi {Plasmonic nanostructures for light trapping in thin-film solar cells}. Vol. 92. Materials Science in Semiconductor Processing, 92. Elsevier Ltd, 2019.
AbstractThe optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) structures. Second, we demonstrate a novel procedure, involving a combination of opto-electronic spectroscopic techniques, allowing for the quantification of useful and parasitic absorption in thin photovoltaic absorber deposited on top of the PBR. We achieve a significant broadband useful absorption enhancement of 90{%} for 0.9 µm thick $μ$c-Si:H film and demonstrate that optical losses due to plasmonic scattering are insignificant below 730 nm. Finally, we present a successful implementation of a plasmonic light trapping scheme in a thin film a-Si:H solar cell. The quantum efficiency spectra of the devices show a pronounced broadband enhancement resulting in remarkably high short circuit current densities (Jsc).
Gao, Tian, Jingyu Yan, Chang-Cheng Liu, Angelina S. Palma, Zhimou Guo, Min Xiao, Xi Chen, Xinmiao Liang, Wengang Chai, and Hongzhi Cao. "
{Chemoenzymatic Synthesis of O-Mannose Glycans Containing Sulfated or Nonsulfated HNK-1 Epitope.}."
Journal of the American Chemical Society. 141 (2019): 19351-19359.
AbstractThe human natural killer-1 (HNK-1) epitope is a unique sulfated trisaccharide sequence presented on O- and N-glycans of various glycoproteins and on glycolipids. It is overexpressed in the nervous system and plays crucial roles in nerve regeneration, synaptic plasticity, and neuronal diseases. However, the investigation of functional roles of HNK-1 in a more complex glycan context at the molecular level remains a big challenge due to lack of access to related structurally well-defined complex glycans. Herein, we describe a highly efficient chemoenzymatic approach for the first collective synthesis of HNK-1-bearing O-mannose glycans with different branching patterns, and for their nonsulfated counterparts. The successful strategy relies on both chemical glycosylation of a trisaccharide lactone donor for the introduction of sulfated HNK-1 branch and substrate promiscuities of bacterial glycosyltransferases that can tolerate sulfated substrates for enzymatic diversification. Glycan microarray analysis with the resulting complex synthetic glycans demonstrated their recognition by two HNK-1-specific antibodies including anti-HNK-1/N-CAM (CD57) and Cat-315, which provided further evidence for the recognition epitopes of these antibodies and the essential roles of the sulfate group for HNK-1 glycan-antibody recognition.
Brandao Moniz, António, and Bettina-Johanna Krings. "
Social conditions of human-machine interaction: decision, control, qualilification."
Kolloquium at Weizenbaum Institute (2019). Berlin: Weizenbaum Institute, WZB, 2019.
AbstractDue to the ongoing technical advancements in robotics, new organizational and occupational impacts are expected in different sectors. The contribution of António Moniz and Bettina-Johanna Krings focuses on the social conditions under which technology is embedded into production processes. Thus, social distribution processes, demographic change, sustainability becomes more and more important when reflecting about "technology futures".
In particular they will ask:
How does automation change work & working conditions?
Which expectations on technology are strengthen-ing the concepts of work?
Which regulations and ethics principles must be considered (safety, autonomy, control)?
Which new competences and qualification dimen-sions will be raised for non-routine tasks in auto-mated environments?
Which new types of human-machine interaction can be developed with increased cyber-physical system application at the shopfloor?