Export 9189 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
Singh, N., A. Amendola, F. Santos, G. Benzoni, and F. Fraternali. "Innovative dissipative devices with tensegrity architecture and super elastic behaviour for the seismic protection of structures." Proceedings of the International Conference on Structural Dynamic , EURODYN. Vol. 2. 2020. 3079-3085. Abstract
n/a
Penalva, H., M. I. Gomes, F. Caeiro, and M. M. Neves. "Lehmer{'}s mean-of-order-p extreme value index estimation: a simulation study and applications." Journal of Applied Statistics. 47 (2020): 2825-2845. Abstract
n/a
Li, K., S. Haque, A. Martins, E. Fortunato, R. Martins, MJ Mendes, and C. S. Schuster. "Light trapping in solar cells: Simple design rules to maximize absorption." Optica. 7 (2020): 1377-1384. AbstractWebsite
n/a
Pereira, J. C. R., A. M. P. de Jesus, J. Xavier, J. A. F. O. Correia, L. Susmel, and A. A. Fernandes. "Low and ultra-low-cycle fatigue behavior of X52 piping steel based on theory of critical distances." International Journal of Fatigue (2020): 105482. AbstractWebsite

The cyclic failure observed in structural components such as pipelines subjected to extreme loading conditions highlights some limitations concerning the application of existing fatigue damage models. The evaluation and prediction of this type of failure in these steel components under large-scale plastic yielding associated with high levels of stress triaxiality are not sufficiently known nor explored. This fatigue domain is conventionally called ultra-low-cycle fatigue (ULCF) and damage features are representative of both low-cycle fatigue (LCF) and monotonic ductile fracture. Thus, in order to understand the ULCF damage mechanisms both monotonic and LCF tests are required to get representative bounding damage information to model the material damage behaviour under such extreme loading conditions. This paper aims at exploring the Theory of Critical Distances (TCD) in the LCF and ULCF fatigue regimes, including the application of the point, line and area methods. The application of the TCD theories has not been explored so far in the ULCF fatigue regimes, despite its promising results in the LCF and high-cycle fatigue. An experimental program was carried out on several specimens’ geometries made of X52 piping steel. In detail, smooth plane specimens and notched plane specimens were cyclic loaded under tension/compression loading in order to obtain fatigue lives within the range of 101-104 cycles. In addition, cyclic bending tests on notched plane specimens were also incorporated in this study. Finite element simulations of all small-scale tests were conducted allowing to derive elastoplastic stress/strain fields along the potential crack paths. The numerical data were subjected to a post-processing in order to find characteristic lengths that can be treated as a fatigue property according to the TCD. A unified strain-life relation is proposed for the X52 piping steel together with a characteristic material length, consisting of a practical relation for pipeline strain-based design under extreme cyclic loading conditions.

Santos, F. A., H. Rebelo, M. Coutinho, L. S. Sutherland, C. Cismasiu, I. Farina, and F. Fraternali. "Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA vs. PETg." Composite Structures (2020): 113128. AbstractWebsite

This work studies the low-velocity impact response of 3D-printed layered structures made of thermoplastic materials (PLA and PETg), which form sacrificial claddings for impact protection. The analyzed structures are composed of crushable cellular cores placed in between terminal stiffening plates. The cores tessellate either honeycomb hexagonal unit cells, or hexagonal cells with re-entrant corners, with the latter exhibiting auxetic response. The given results highlight that the examined PETg protectors exhibit higher energy dissipation ratios and lower restitution coefficients, as compared to PLA structures that have the same geometry. It is concluded that PETg qualifies as an useful material for the fabrication of effective impact protection gear through ordinary, low-cost 3D printers.

Vicente da Silva, M., N. Deusdado, and A. N. Antão. "Lower and upper bound limit analysis via the alternating direction method of multipliers." Computers and Geotechnics. 124 (2020): 103571. AbstractWebsite

Computational limit analysis methods invariably lead to the need to solve a mathematical programming problem. The alternating direction method of multipliers (ADMM) is one versatile and robust technique to solve non-linear convex optimization problems that has recently found applications in a wide range of fields. Its solution scheme, based on an operator splitting algorithm, is not only easy to implement but also suitable to efficiently solve large-scale variational problems. Starting from the ADMM framework, we derive a strict upper bound finite element formulation using a two-(primal)-field approximation, one for the velocity field and the other for the plastic strain rate field. Next, following a similar approach, we develop a novel strict lower bound formulation. Here, the two-(primal)-field model is based on a redundant approximation of the stress field. Duality principles are then explored in order to unify these two formulations.The effectiveness of this approach is demonstrated on test problems and, to conclude, some considerations are made about the performance results.

Singh, N., A. Amendola, F. Santos, G. Benzoni, and F. Fraternali. "Mechanical response of tensegrity dissipative devices incorporating shape memory alloys." IOP Conference Series: Materials Science and Engineering. Vol. 999. 2020. Abstract
n/a
Miranda, R., E. Babilio, N. Singh, D. P. Villamil, F. Santos, and F. Fraternali. "Mechanics of energy harvesters based on tensegrity solar facades." IOP Conference Series: Materials Science and Engineering. Vol. 999. 2020. Abstract
n/a
Miranda, R., E. Babilio, N. Singh, F. Santos, and F. Fraternali. "Mechanics of smart origami sunscreens with energy harvesting ability." Mechanics Research Communications. 105 (2020). AbstractWebsite
n/a
Reboredo, {Fernando Henrique}, A. Barbosa, {Maria Manuela} Silva, {Maria Luisa} Carvalho, {José Paulo} Santos, {Maria Fernanda} Pessoa, Fernando Lidon, {José C. } Ramalho, and Mauro Guerra. "Mineral Content of Food Supplements of Plant Origin, by Energy Dispersive X-ray Fluorescence: A Risk Assessment." Exposure and Health. 12 (2020): 917-927. Abstract

The aim of this study is to evaluate the elemental composition of six food supplements of plant origin, commonly sold in the Portuguese market, by energy dispersive X-ray fluorescence. The presence of arsenic in all the Maca, Ashwagandha, Camu-Camu and Hemp protein samples (except the generic form) is a reason of concern due to the long-term effects of As mainly in its inorganic form. Thus, great caution must be taken on some food supplements, particularly the cases of Moringa from Egypt and Yellow/Xpresso Maca, whose inorganic As concentrations are in line with the upper bound concentration for the 95th dietary exposure according to the European Food Safety Authority which is 0.64 μg/kg bw/day. In what regards Hemp protein, if the supplier’s daily intake recommendation (30 g) is followed, values as high as 1.75 μg/kg bw/day of inorganic As will be consumed, which are dangerously above the upper bound. In this case this specific supplement lot should be removed from the market. Also the consumption of Hemp protein leads to a daily intake of Mn above the Daily Reference Intake (DRI) and Adequate Intakes (AIs) for adults. The contamination of Goji berries by Pb is a reason for concern—organic berries contained 11.3 μg/g while berries derived from conventional agriculture 11.6 μg/g, leading to daily intake doses of 315.3 μg and 324.8 μg, respectively, if the recommended daily intake of 28 g is followed. Our findings point out to an inadequacy of the recommended intakes by the supplier vis a vis the concentrations observed, greatly increasing the risk for public health.

Silva, Teresa P., João X. Matos, Daniel de Oliveira, João P. Veiga, Igor Morais, Pedro Gonçalves, and Lu{\'ıs Albardeiro. "Mineral Inventory of the Algares 30-Level Adit, Aljustrel Mine, Iberian Pyrite Belt, Portugal." Minerals. 10 (2020): 853. Abstract
n/a
Ribeiro, Diana O., Aldino Viegas, Virgínia M. R. Pires, João Medeiros-Silva, Pedro Bule, Wengang Chai, Filipa Marcelo, Carlos M. G. A. Fontes, Eurico J. Cabrita, Angelina S. Palma, and Ana Luísa Carvalho. "Molecular basis for the preferential recognition of β1,3-1,4-glucans by the family 11 carbohydrate-binding module from Clostridium thermocellum." The FEBS Journal. 287 (2020): 2723-2743. AbstractWebsite

Understanding the specific molecular interactions between proteins and β1,3-1,4-mixed-linked d-glucans is fundamental to harvest the full biological and biotechnological potential of these carbohydrates and of proteins that specifically recognize them. The family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11) is known for its binding preference for β1,3-1,4-mixed-linked over β1,4-linked glucans. Despite the growing industrial interest of this protein for the biotransformation of lignocellulosic biomass, the molecular determinants of its ligand specificity are not well defined. In this report, a combined approach of methodologies was used to unravel, at a molecular level, the ligand recognition of CtCBM11. The analysis of the interaction by carbohydrate microarrays and NMR and the crystal structures of CtCBM11 bound to β1,3-1,4-linked glucose oligosaccharides showed that both the chain length and the position of the β1,3-linkage are important for recognition, and identified the tetrasaccharide Glcβ1,4Glcβ1,4Glcβ1,3Glc sequence as a minimum epitope required for binding. The structural data, along with site-directed mutagenesis and ITC studies, demonstrated the specificity of CtCBM11 for the twisted conformation of β1,3-1,4-mixed-linked glucans. This is mediated by a conformation–selection mechanism of the ligand in the binding cleft through CH-π stacking and a hydrogen bonding network, which is dependent not only on ligand chain length, but also on the presence of a β1,3-linkage at the reducing end and at specific positions along the β1,4-linked glucan chain. The understanding of the detailed mechanism by which CtCBM11 can distinguish between linear and mixed-linked β-glucans strengthens its exploitation for the design of new biomolecules with improved capabilities and applications in health and agriculture. Database Structural data are available in the Protein Data Bank under the accession codes 6R3M and 6R31.

Ghosh, Indranil, Filipe Marques, and Subrata Chakraborty. "A new bivariate Poisson distribution via conditional specification: properties and applications." Journal of Applied Statistics (2020): 1-23. Abstract
n/a
Coolen, Frank PA, and Filipe J. Marques. "Nonparametric Predictive Inference for Test Reproducibility by Sampling Future Data Orderings." Journal of Statistical Theory and Practice. 14 (2020): 1-22. Abstract
n/a
Sanchez-Sobrado, O., MJ Mendes, T. Mateus, J. Costa, D. Nunes, H. Aguas, E. Fortunato, and R. Martins. "Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cells." Solar Energy. 196 (2020): 92-98. AbstractWebsite
n/a
Isufi, Brisid, António Pinho Ramos, and Válter Lúcio. "Post-earthquake Performance of a Slab-Column Connection with Punching Shear Reinforcement." Journal of Earthquake Engineering (2020): 1-23. AbstractWebsite
n/a
Inácio, Micael M. G., Massimo Lapi, and Antonio Pinho Ramos. "Punching of reinforced concrete flat slabs – Rational use of high strength concrete." Engineering Structures. 206 (2020): 110194. AbstractWebsite

This paper deals with punching of reinforced high strength concrete (HSC) flat slabs. Despite the use of HSC increased significantly in the last years, the experimental research on punching behavior of HSC slabs is still limited. Furthermore, most of this past research adopted concrete compressive strength lower than 90 MPa. In a previous work by this research group three specimens with concrete compressive strength around 120 MPa and one with normal strength concrete (NSC) were tested. The present work represents the continuation of the previous activity and it is focused on the rational use of HSC. Four specimens with HSC and one of NSC were tested under monotonic vertical loading. The HSC was placed only in the slab-column connection region and it was limited to a thin layer in the compressive zone, in order to have a more economical and sustainable solution. This rational use of the HSC showed excellent results in terms of punching strength. Limiting the HSC to a thin layer in the compressive zone resulted in an almost equal punching strength to that obtained with the slab entirely casted in HSC.

Gomes, M. I., F. Caeiro, F. Figueiredo, L. Henriques-Rodrigues, and D. Pestana. "Reduced-bias and partially reduced-bias mean-of-order-p value-at-risk estimation: a Monte-Carlo comparison and an application." Journal of Statistical Computation and Simulation. 90 (2020): 1735-1752. Abstract
n/a
Santos, J. P., J. Machado, Guojie Bian, Nancy Paul, M. Trassinelli, P. Amaro, M. Guerra, C. I. Szabo, A. Gumberidze, J. M. Isac, J. P. Santos, J. P. Desclaux, and P. Indelicato. "Reference-free measurements of the 1s2s2p2P1/2,3/2o\rightarrow1s22s2S1/2 and 1s2s2p4P5/2\rightarrow1s22s2S1/2 transition energies and widths in lithiumlike sulfur and argon ions." Physical Review A (2020). AbstractWebsite
n/a
Isufi, B., I. Cismasiu, R. Marreiros, A. Pinho Ramos, and V. Lúcio. "Role of punching shear reinforcement in the seismic performance of flat slab frames." Engineering Structures. 207 (2020). AbstractWebsite
n/a
Cismaşiu, C., F. P. A. Santos, R. A. D. S. Perdigão, V. M. S. Bernardo, P. X. Candeias, A. R. Carvalho, and L. M. C. Guerreiro. "Seismic Vulnerability Assessment of a RC Pedestrian Crossing." Journal of Earthquake Engineering. 24 (2020): 727-744. AbstractWebsite
n/a
Centeno, P., M. F. Alexandre, M. Chapa, JV Pinto, J. Deuermeier, T. Mateus, E. Fortunato, R. Martins, H. Águas, and MJ Mendes. "Self-Cleaned Photonic-Enhanced Solar Cells with Nanostructured Parylene-C." Advanced Materials Interfaces. 7 (2020). AbstractWebsite
n/a
Franco, N., C. Chastre, and H. Biscaia. "Strengthening RC Beams Using Stainless Steel Continuous Reinforcement Embedded at Ends." Journal of Structural Engineering (United States). 146 (2020). AbstractWebsite

An innovative system for the flexural strengthening of RC structures designated continuous reinforcement embedded at ends (CREatE) is presented in this research work. The main characteristics and procedures for the application of this new strengthening technique were described. To evaluate the performance and efficiency of this technique, a set of RC T-beams was subjected to a four-point bending test setup. The reference RC T-beam was not strengthened; all other RC T-beams were strengthened with postinstalled stainless steel bars. Different application arrangements and different amounts of reinforcement were considered, and the CREatE technique was tested under monotonic and cyclic loading histories. The tests were modeled using the nonlinear finite-element method (FEM) to predict the performance of the RC T-beams, which allowed analyzing, in detail and with good agreement with the experiments, the influence of the CREatE technique on the (1) strains developed in the concrete, (2) cracking patterns, and (3) strains developed in the stirrups. Apart from the expected increases in the flexural stiffness and load-bearing capacity of the T-beams, the results showed that the use of the CREatE technique led to higher ductility indexes in the displacement compared with traditional techniques. Moreover, with the CREatE technique, premature debonding of the reinforcement material from the concrete tensioned surface - commonly observed in externally bonded reinforcement (EBR) strengthening systems - was eliminated. © 2020 American Society of Civil Engineers.