Publications

Export 119 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
Karlovich, Alexei Yu. "Criteria for one-sided invertibility of a functional operator in rearrangement-invariant spaces of fundamental type." Mathematische Nachrichten. 229 (2001): 91-118. AbstractWebsite

Let \(\gamma\) be a simple open smooth curve and \(\alpha\) be an orientation-preserving diffeomorphism of \(\gamma\) onto itself which has only two fixed points. Criteria for one-sided invertibility of the functional operator
\[
A=aI-bW,
\]
where \(a\) and \(b\) are continuous functions, \(I\) is the identity operator, \(W\) is the shift operator: \((Wf)(t)=f[\alpha(t)]\), in a reflexive rearrangement-invariant space of fundamental type \(X(\gamma)\) with nontrivial Boyd indices, are obtained.

Karlovich, Alexei Yu. "Commutators of convolution type operators on some Banach function spaces." Annals of Functional Analysis. 6.4 (2015): 191-205. AbstractWebsite

We study the boundedness of Fourier convolution operators \(W^0(b)\) and the compactness of commutators of \(W^0(b)\) with multiplication operators \(aI\) on some Banach function spaces \(X(\mathbb{R})\) for certain classes of piecewise quasicontinuous functions \(a\in PQC\) and piecewise slowly oscillating Fourier multipliers \(b\in PSO_{X,1}^\diamond\). We suppose that \(X(\mathbb{R})\) is a separable rearrangement-invariant space with nontrivial Boyd indices or a reflexive variable Lebesgue space, in which the Hardy-Littlewood maximal operator is bounded. Our results complement those of Isaac De La Cruz-Rodríguez, Yuri Karlovich, and Iván Loreto Hernández obtained for Lebesgue spaces with Muckenhoupt weights.

Karlovich, Alexei Yu. "Singular integral operators on variable Lebesgue spaces with radial oscillating weights." Operator Algebras, Operator Theory and Applications.Operator Theory Advances and Applications, 195 . Eds. JJ Grobler, LE Labuschagne, and M. Möller. Basel: Birkhäuser, 2010. 185-212. Abstract

We prove a Fredholm criterion for operators in the Banach algebra of singular integral operators with matrix piecewise continuous coefficients acting on a variable Lebesgue space with a radial oscillating weight over a logarithmic Carleson curve. The local spectra of these operators are massive and have a shape of spiralic horns depending on the value of the variable exponent, the spirality indices of the curve, and the Matuszewska-Orlicz indices of the weight at each point. These results extend (partially) the results of A. Böttcher, Yu. Karlovich, and V. Rabinovich for standard Lebesgue spaces to the case of variable Lebesgue spaces.

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Necessary conditions for Fredholmness of singular integral operators with shifts and slowly oscillating data." Integral Equations and Operator Theory. 71.1 (2011): 29-53. AbstractWebsite

Suppose \(\alpha\) is an orientation-preserving diffeomorphism (shift) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\). In [KKL11] we found sufficient conditions for the Fredholmness of the singular integral operator with shift \[(aI-bW_\alpha)P_++(cI-dW_\alpha)P_-\] acting on \(L^p(\mathbb{R}_+)\) with \( 1 < p < \infty\), where \(P_\pm=(I\pm S)/2\), \(S\) is the Cauchy singular integral operator, and \(W_\alpha f=f\circ\alpha\) is the shift operator, under the assumptions that the coefficients \(a,b,c,d\) and the derivative \(\alpha'\) of the shift are bounded and continuous on \(\mathbb{R}_+\) and may admit discontinuities of slowly oscillating type at \(0\) and \(\infty\). Now we prove that those conditions are also necessary.

Karlovich, Alexei Yu. "The index of singular integral operators in reflexive Orlicz spaces." Mathematical Notes. 64.3 (1998): 330-341. AbstractWebsite

We consider the Banach algebra \(\mathfrak{A}\) of singular integral operators with matrix piecewise continuous coefficients in the reflexive Orlicz space \(L_M^n(\Gamma)\). We assume that \(\Gamma\) belongs to a certain wide subclass of the class of Carleson curves; this subclass includes curves with cusps, as well as curves of the logarithmic spiral type. We obtain an index formula for an arbitrary operator from the algebra \(\mathfrak{A}\) in terms of the symbol of this operator.

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "On a weighted singular integral operator with shifts and slowly oscillating data." Complex Analysis and Operator Theory. 10.6 (2016): 1101-1131. AbstractWebsite

Let \(\alpha,\beta\) be orientation-preserving diffeomorphism (shifts) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\) and \(U_\alpha,U_\beta\) be the isometric shift operators on \(L^p(\mathbb{R}_+)\) given by \(U_\alpha f=(\alpha')^{1/p}(f\circ\alpha)\), \(U_\beta f=(\beta')^{1/p}(f\circ\beta)\), and \(P_2^\pm=(I\pm S_2)/2\) where \[ (S_2 f)(t):=\frac{1}{\pi i}\int\limits_0^\infty \left(\frac{t}{\tau}\right)^{1/2-1/p}\frac{f(\tau)}{\tau-t}\,d\tau, \quad t\in\mathbb{R}_+, \]
is the weighted Cauchy singular integral operator. We prove that if \(\alpha',\beta'\) and \(c,d\) are continuous on \(\mathbb{R}_+\) and slowly oscillating at \(0\) and \(\ infty\), and \[ \limsup_{t\to s}|c(t)|<1,\quad \limsup_{t\to s}|d(t)|<1, \quad s\in\{0,\infty\}, \] then the operator \((I-cU_\alpha)P_2^++(I-dU_\beta)P_2^-\) is Fredholm on \(L^p(\mathbb{R}_+)\) and its index is equal to zero. Moreover, its regularizers are described.

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Semi-Fredholmness of weighted singular integral operators with shifts and slowly oscillating data." Operator Theory, Operator Algebras, and Matrix Theory. Operator Theory: Advances and Applications, vol. 267. Eds. Carlos André, Maria Amélia Bastos, Alexei Yu. Karlovich, Bernd Silbermann, and Ion Zaballa. Basel: Birkhäuser, 2018. 221-246.
Karlovich, Alexei Yu. "Algebras of continuous Fourier multipliers on variable Lebesgue spaces." Mediterranean Journal of Mathematics. 17.102 (2020): 19 pages.Website
Karlovich, Alexei Yu. "Singular integral operators with regulated coefficients in reflexive Orlicz spaces." Siberian Mathematical Journal. 38.2 (1997): 253-266.Website
Karlovich, Alexei Yu. "Fredholmness and index of simplest weighted singular integral operators with two slowly oscillating shifts." Banach Journal of Mathematical Analysis. 9.3 (2015): 24-42. AbstractWebsite

Let \(\alpha\) and \(\beta\) be orientation-preserving diffeomorphism (shifts) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\), where the derivatives \(\alpha'\) and \(\beta'\) may have discontinuities of slowly oscillating type at \(0\) and \(\infty\). For \(p\in(1,\infty)\), we consider the weighted shift operators \(U_\alpha\) and \(U_\beta\) given on the Lebesgue space \(L^p(\mathbb{R}_+)\) by \(U_\alpha f=(\alpha')^{1/p}(f\circ\alpha)\) and \(U_\beta f=(\beta')^{1/p}(f\circ\beta)\). For \(i,j\in\mathbb{Z}\) we study the simplest weighted singular integral operators with two shifts \(A_{ij}=U_\alpha^i P_\gamma^++U_\beta^j P_\gamma^-\) on \(L^p(\mathbb{R}_+)\), where \(P_\gamma^\pm=(I\pm S_\gamma)/2\) are operators associated to the weighted Cauchy singular integral operator \[ (S_\gamma f)(t)=\frac{1}{\pi i}\int_{\mathbb{R}_+} \left(\frac{t}{\tau}\right)^\gamma\frac{f(\tau)}{\tau-t}d\tau \] with \(\gamma\in\mathbb{C}\) satisfying \(0<1/p+\Re\gamma<1\). We prove that the operator \(A_{ij}\) is a Fredholm operator on \(L^p(\mathbb{R}_+)\) and has zero index if \[ 0<\frac{1}{p}+\Re\gamma+\frac{1}{2\pi}\inf_{t\in\mathbb{R}_+}(\omega_{ij}(t)\Im\gamma), \quad \frac{1}{p}+\Re\gamma+\frac{1}{2\pi}\sup_{t\in\mathbb{R}_+}(\omega_{ij}(t)\Im\gamma)<1, \] where \(\omega_{ij}(t)=\log[\alpha_i(\beta_{-j}(t))/t]\) and \(\alpha_i\), \(\beta_{-j}\) are iterations of \(\alpha\), \(\beta\). This statement extends an earlier result obtained by the author, Yuri Karlovich, and Amarino Lebre for \(\gamma=0\).

Karlovich, Alexei Yu. "Singular integral operators on Nakano spaces with weights having finite sets of discontinuities." Function spaces IX. Proceedings of the 9th international conference, Kraków, Poland, July 6–11, 2009. Banach Center Publications, 92. Eds. Henryk Hudzik, Grzegorz Lewicki, Julian Musielak, Marian Nowak, and Leszek Skrzypczak. Warszawa: Polish Academy of Sciences, Institute of Mathematics, 2011. 143-166. Abstract

In 1968, Gohberg and Krupnik found a Fredholm criterion for singular integral operators of the form \(aP+bQ\), where \(a,b\) are piecewise continuous functions and \(P,Q\) are complementary projections associated to the Cauchy singular integral operator, acting on Lebesgue spaces over Lyapunov curves. We extend this result to the case of Nakano spaces (also known as variable Lebesgue spaces) with certain weights having finite sets of discontinuities on arbitrary Carleson curves.

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "The index of weighted singular integral operators with shifts and slowly oscillating data." Journal of Mathematical Analysis and Applications. 450 (2017): 606-630.Website
Karlovich, Alexei Yu. "Semi-Fredholm singular integral operators with piecewise continuous coefficients on weighted variable Lebesgue spaces are Fredholm." Operators and Matrices. 1.3 (2007): 427-444. AbstractWebsite

Suppose \(\Gamma\) is a Carleson Jordan curve with logarithmic whirl points, \(\varrho\) is a Khvedelidze weight, \(p:\Gamma\to(1,\infty)\) is a continuous function satisfying \(|p(\tau)-p(t)|\le -\mathrm{const}/\log|\tau-t|\) for \(|\tau-t|\le 1/2\), and \(L^{p(\cdot)}(\Gamma,\varrho)\) is a weighted generalized Lebesgue space with variable exponent. We prove that all semi-Fredholm operators in the algebra of singular integral operators with \(N\times N\) matrix piecewise continuous coefficients are Fredholm on \(L_N^{p(\cdot)}(\Gamma,\varrho)\).

Karlovich, Alexei Yu. "Singular integral operators with flip and unbounded coefficients on rearrangement-invariant spaces." Functional Analysis and its Applications. Proceedings of the international conference, dedicated to the 110th anniversary of Stefan Banach, Lviv National University, Lviv, Ukraine, May 28--31, 2002. Eds. V. Kadets, and W. Zelazko. Amsterdam: Elsevier, 2004. 123-131. Abstract

We prove Fredholm criteria for singular integral operators of the form
\[
P_++M_bP_-+M_uUP_-,
\]
where \(P_\pm\) are the Riesz projections, \(U\) is the flip operator, and \(M_b,M_u\) are operators of multiplication by functions \(b,u\), respectively, on a reflexive rearrangement-invariant space with nontrivial Boyd indices over the unit circle. We assume a priori that \(M_b\) is bounded, but \(M_u\) may be unbounded. The function \(u\) belongs to a class of, in general, unbounded functions that relates to the Douglas algebra \(H^\infty+C\).

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "The generalized Cauchy index of some semi-almost periodic functions." Boletín de la Sociedad Matemática Mexicana. 22.2 (2016): 473-485. AbstractWebsite

We compute the generalized Cauchy index of some semi-almost periodic functions, which are important
in the study of the Fredholm index of singular integral operators with shifts and slowly oscillating data.

Karlovich, Alexei. "Toeplitz operators between distinct abstract Hardy spaces." Extended Abstracts Fall 2019. Trends in Mathematics, vol 12. Eds. Abakumov E., Baranov A., Borichev A., Fedorovskiy K., and Ortega-Cerdà J. Cham: Birkhäuser, 2021. 105-112.
Karlovich, Alexei Yu. "Remark on the boundedness of the Cauchy singular integral operator on variable Lebesgue spaces with radial oscillating weights." Journal of Function Spaces and Applications. 7 (2009): 301-311. AbstractWebsite

Recently V. Kokilashvili, N. Samko, and S. Samko have proved a sufficient condition for the boundedness of the Cauchy singular integral operator on variable Lebesgue spaces with radial oscillating weights over Carleson curves. This condition is formulated in terms of Matuszewska-Orlicz indices of weights. We prove a partial converse of their result.

Karlovich, Alexei Yu. "Norms of Toeplitz and Hankel operators on Hardy type subspaces of rearrangement-invariant spaces." Integral Equations and Operator Theory. 49 (2004): 43-64. AbstractWebsite

We prove analogues of the Brown-Halmos and Nehari theorems on the norms of Toeplitz and Hankel operators, respectively, acting on subspaces of Hardy type of reflexive rearrangement-invariant spaces with nontrivial Boyd indices.

Karlovich, Alexei Yu., and Yuri I. Karlovich. "Invertibility in Banach algebras of functional operators with non-Carleman shifts." Ukrains'kyj matematychnyj kongres -- 2001. Pratsi. Sektsiya 11. Funktsional'nyj analiz. Kyiv: Instytut Matematyky NAN Ukrainy, 2002. 107-124. Abstract13_2002_ukrainian_math_congress-kyiv-01.pdf

We prove the inverse closedness of the Banach algebra \(\mathfrak{A}_p\) of functional operators with non-Carleman shifts, which have only two fixed points, in the Banach algebra of all bounded linear operators on \(L^p\). We suppose that \(1 \le p \le \infty\) and the generators of the algebra \(\mathfrak{A}_p\) have essentially bounded data. An invertibility criterion for functional operators in \(\mathfrak{A}_p\) is obtained in terms of
the invertibility of a family of discrete operators on \(l^p\). An effective invertibility criterion is established for binomial difference operators with \(l^\infty\) coefficients on the spaces \(l^p\). Using the reduction to binomial difference operators, we give effective criteria of invertibility for binomial functional operators on the spaces \(L^p\).

Karlovych, Oleksiy, and Eugene Shargorodsky. "A remark on Toeplitz and Laurent operators acting on l-p spaces with power weights." Linear Algebra and Applications. 697 (2024): 82-92.Website
Karlovych, Oleksiy, and Sandra Mary Thampi. "On multiplier analogues of the algebra C+H^\infty on weighted rearrangement-invariant sequence spaces." Journal of Approximation Theory (In Press).
Karlovych, Oleksiy, and Eugene Shargorodsky. "The Coburn lemma and the Hartman-Wintner-Simonenko theorem for Toeplitz operators on abstract Hardy spaces." Integral Equations and Operator Theory. 95 (2023): 6.Website
Karlovych, Oleksiy, and Márcio Valente. "On the operator and essential norms of Fourier convolution operators and Wiener-Hopf operators with the same symbol." Proceedings of IWOTA 2023. Birkhäuser, In Press.
Karlovych, Oleksiy, and Alina Shalukhina. "Maximal noncompactness of singular integral operators on Lp spaces with power weights." Tbilisi Analysis and PDE Seminar. Extended Abstracts of the 2020-2023 Seminar Talks. Eds. Rolnad Duduchava, Eugene Shargorodsky, and George Tephnadze. Cham: Birkhäuser, 2024. 87-97.
Karlovych, Oleksiy, and Eugene Shargorodsky. "On the weak convergence of shift operators to zero on rearrangement-invariant spaces." Revista Matemática Complutense. 36.1 (2023): 91-124.Website