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Invertibility in Banach algebras of functional operators with
non-Carleman shifts

A. Yu. Karlovich*
Yu. I. Karlovich!

Abstract

We prove the inverse closedness of the Banach algebra 2, of functional operators with non-

Carleman shifts, which have only two fixed points, in the Banach algebra of all bounded
linear operators on LP.

We suppose that 1 < p < oo and the generators of the algebra 2, have essentially bounded
data. An invertibility criterion for functional operators in ¥, 1s obtained in terms of the
invertibility of a family of discrete operators on IP. An effective invertibility criterion is
established for binomial difference operators with [* coefficients on the spaces [P Using

the reduction to binomial difference operators, we give effective criteria of invertibility for
binomial functional operators on the spaces L”.

1. Introduction

" Let a be an orientation-preserving homeomorphism of [0, 1] onto itself, which has only two fixed

- points 0 and 1. So, a(0) = 0 and (1) = 1, but a(t) # ¢t for t € I := (0,1). The function « is

- referred to as a shift. Since the shift o does not satisfy the generalized Carleman condition (see,

eg., [11, 14]), o is called a non-Carleman shift.

| Denote by § := a_; the inverse function to a. Since o and 3 strictly monotomcally increase
~on [0, 1], their derivatives exist and are positive almost everywhere on I. If loga’ € L™ := L*°(I)

Lhen the shift operator U, defined by

(Uap)(t) := (a’(t))l/P(p[a(t)]’ t el

% 8 an isometry on the Lebesgue space LP := LP(I) for every p € [1,00]. Its inverse is given by
f Uil = Us. Put ap(t) =t and an(t) = afa,- 1(¢)] for n € Z and t € [0,1]. Then U? = U, for
§ nez.

. Fix an arbitrary point z € I. Let v be a half-open segment with endpoints z and a(z) such
that z € v but a(z) € v. Notice that either z < a(z) and then 1 is the attracting point of
- a, or a(z) < = and then 0 is the attracting point of o (see, e.g., [11, Chapter 1, Section 3]).
The shift o generates the cyclic group, which is algebraically isomorphic to the group Z of

all integer numbers. In view of this important propert}, we can consider the following orbital
decomp051t10n

}

=} auly (V) Nay(y) =0 (i # j) (1)

nez

ey il i,
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For a Banach space X, let ‘B(X) be the Banach algebra of all bounded linear operators
on X. Denote by 2, the smallest Banach subalgebra of B(LP),1 < p < o0, containing the
operators U,, U, ! and all the operators of multiplication by functions in L>°. Thus, in what
follows, always p € [1, 00| and the generators of 2, have L* data. Following [1, 11], operators -
A € A, are called functional operators.

Functional operators and their discrete analogues play an important role in the theory of
functional differential operators (see [1}, [13] and the references therein), theory of singular
integral operators, convolution type operators and pseudodifferential operators with shifts (see,
e.g., 2], [11], {14], [19]), theory of dynamical systems [5], etc.

The paper is devoted to several facts about the invertibility of operators A € 2,. Using the
Bochner-Phillips theorem, in Section 2 we prove the inverse closedness of 2, in B(LP). Similar
results tor Wiener algebras of functional operators on Lebesgue spaces over locally compact __
commutative groups, which are based on an idea of [18], were established in the most general
form in [12, Chapter 2| (see also [3, Section 26] for the inverse closedness of Wiener subalgebras -
in C7-algebras of abstract functional operators with discrete commutative groups of shifts).
Note also that in the case of piecewise continuous coefficients, the inverse closedness of Banach
algebras of functional operators with discrete subexponential groups of shifts on Lebesgue spaces
over piecewise smooth contours was obtained by other methods in [7], [8].

In Section 3, making use of a decomposition of the space L? into the direct integral of the
spaces [P and generalizing the approach of [16, Section 26], we get an invertibility criterion for
operators A € 2, in terms of the invertibility of a family of discrete operators on /P. In the case
of piecewise continuous coefficients analogous results for A € 2, (1 < p < co) and for functional
operators with discrete subexponential groups of shifts on the spaces IL? (1 < p < ) were
obtained in [9], [15] and in [7], [8], respectively. The latter results were extended to C*-algebras
of functional operators with discrete amenable groups of shifts in [6], [7] (see also [1, Chapter 3]
and (3, Section 21]).

In Section 4 we get an effective invertibility criterion for binomial difference operators with
(™ coeflicients on the spaces [P, 1 < p < oo (cf. [3, Theorem 17.3] for a related general C*-algebra
result).

Finally, in Section 5 we obtain two effective invertibility criteria for binomial functional
operators in %, on the basis of Sections 3 and 4. Those criteria are qualitatively different from
that for binomial functional operators with data in C|0, 1] (see {11, Chapter 2, Section 4]).

2. Inverse closedness of 2, in B(L?)

2.1. The Bochner-Phillips theorem

For a unital Banach algebra B, let GB denote the group of all invertible elements in B. Let A be
a Banach subalgebra of B with the same identity element. The algebra A is said to be inverse
closed in B, if for every a € A such that a € GB, we have a € GA. |

Let G be a discrete commutative group, K = K(G) its character group (all characters are
continuous, and K is a compact group), and £ a unital Banach algebra. Let C(K,L) be the
Banach algebra of all continuous functions on K with values in £, and let W (K, L) denote the
subalgebra of C'(K, £) which consists of the functions

T:K—>L, yw— Zx(/\)b,\}
AEG
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where by € L, x(A) is the value of the character y at the element \ € G, and

I Tllw =) |lballc < o

AEG

Theorem 1. (see |4, Theorem 4] and [12, Theorem 1.4.12]). The algebra W (K, L) is inverse

closed wn C(K, L), that is, if T(x) has an inverse in L for every x € K, then T has an inverse
in W(K, L).

2.2. Operators which commute with operators of multiplication

The following statement is known, but for the convenience of readers, we give its proof.

Proposition 2. Suppose 1 < p < 0o and A is a finite segment of the real line. Fvery

operator D € B(LP(A)) which commutes with all the operators oI, where p € C(A), has the
form D = dI, whered € L*®(A).

Proof. By assumption, D(gf) = gDf for any g € C(A) and any f € LP(A). In particular,
taking f = 1, we get Dg = ag where a := D(1) € LP(A). Thus D is the operator of multiplication
by the function a € LP(A) at least on the subset of continuous functions. Since D € B(LP(A))
one can show (assuming the contrary) that a € L>°(A). Hence for every g € C'(A)

?

p

1DgllLra) = llaglizeay < llallLeoayllgllLra). (2)

Since the set C'(A) is dense in LP(A), the inequality (2) allows us to extend D by continuity to
the whole space LP(A) as the operator of multiplication by the function a € L*®(A). =

2.3. Inverse closedness of the Wiener algebra of functional operators

Let J be a measurable a-invariant (that is, a(.]]j = J) subset of . We denote by W,(J) (1 <p <
00) the set of all operators A4 € B(LP(J)) which can be represented in the form

A=) aU" | (3)
| nez
where loga’ € L*°(1), a,, € L*®(]) and
1 Allw, @) = Y llanll oo < oo (4)
ne€zZ

It is easy to see that W,(J) is a Banach algebra with the norm I - llw,5)- This algebra is called
the Wiener algebra of functional operators. If J = I, we will write Wy instead of W, ().

Theorem 3. The Wiener algebra Wy 1s inverse closed in B(LP).

Proof. First let 1 < p < oo. For G = Z, its character group K(G) coincides with the unit

~crcle T, and z(n) = 2" for z € T, n € Z. We apply Theorem 1 to £ = B(LP), G = Z, and

K(G)=T. |
For an invertible operator A € W, given by (3), consider the function
a: T — L, a(z):= Z 2z apUl. (5)
ne
109



It follows from (3)-(4) that a € W(T,L)}. For each z € T, let ¢, denote a function in GL*>

which satisfies
o lan(t)] = 2", (t), tery, neLl. (6)

Put &, := ¢,I. In view of (6),
& 'UP, =2U, 2€T. ' (7)

For every z € T, we infer from (5) and (7) that

= > z"a, U} = ®;° (Z anUg) b, =0 1AP,. (8)

nez nez

Since A is invertible in £, a(z) is invertible in £ for every z € T, in view of (8). Then, due to
Theorem 1, a is invertible in W (T, £). Thus, its inverse has the form

Cfl(??) = Znan n €T, (9)
nez

where D, € L for every n € N, and > ||Dy,|lz < oc. Since 4 = a(1), from (9) we get
nez |

Al =a"(1) =) Dy (10)
ne s

Let us show that there exist functions d, € L* such that D, = d,U2 for alln € Z. It
follows from (8) that

(I)"l a(2)®, = Z @_l(z anU”)(I)C Z ("2"a, U, = a(Cz) 2, €T,

nez neL
Theretore,
O a7 (2)Bc =a71(¢2), 2, (€T (11)
Letting n = z and 7 = (2 in (9), we obtain from (11) that
Y OI'Dy B = "Dy, 2,(€T. (12)
nez nez

Considering (12) as a function of z and comparing the coefficients of 2", we get <I>_1’D nPe = ("D,
for every n € Z, and thus

O DU = ("D UL, nelZ. | (13)

It follows from (7) that
U =¢"U"®,, C€T, nez (14)

Combining (13)—(14), we obtain
G DU "0 = DU, nel , (15)

Taking into account (1), consider the space LP = LP(Il) as the direct sum of its subspaces
LP(ai(7y)), @ € Z. The operator D, := D, U™ € L can be represented in this direct sum of
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subspaces by the operator matrix {II;D,II;}"72_  where [T := (xy 0 ax)I (k € Z) and x, is
the characteristic function of . Since (15) is valid for every function ¢, € GL*™® satisfying (6),
we choose pc(t) = (* for t € a;(7), 7 € Z; and from (15) we get

Hig_iDﬂCjHj = HiDnHj,, 1, 7,n € Z.

Thus, Cj"iHiDnHj = 11;Dy,11; whenever 7, 7,n € Z. Choosing ( # 1, we get 1L, Dp11; = 0 for
i # 7. Hence,

Dy, = diag {I; D, I1;}7°° | neZ (16)

We are lett with proving that each operator IT; D, I1; (i,n € Z) is an operator of multiplication

by a tunction in L*(a;(y)). Without loss of generality assume 7 = 0. It follows from (15) that

@Eand?C = Dy, whence, in view of (6) and (16), we get

‘P—IX'}’D?‘LX'}*@I ~ X’}‘DRX'YI (17)

for every ¢ € GL*(y). Thus, by (17) and Proposition 2, there exists a function d, o € L®(v)
such that
[oDrplly = Xy DnxyI = dnol € B(LP(v)), n€Z.

Hence, for every i,n € Z, there are functions d,,; € L*(a;(v)) for which II;D,II; = dn,if -
B(LP(a;(v))- 1t follows from (16) that D, = d,I, where d,(t) = dn;(t) for t € a;(7), 1 € Z.
Finally,

D, = DU, =d,U};, where d, € L>* (ne€2Z). (18)

Combining (10) and (18), we complete the proof for p € [1, o0).
Let p = oo. Obviously, for every operator A € W, of the form (3), there exists the operator

B =Y (@noan)Us" € W,
nez

such that A = B*. But according to [10, Chapter III, Theorem 5.30], the inveftibility of A on
L is equivalent to the invertibility of B on L'. Thus, if A € WL, is invertible, then B € W is
invertible and, by the part already proved, B~' € W). Then A™!' = (B~ )* e W,,. =

Corollary 4. If J C I is an a-invariant subset of positive measure, then the Wiener algebra
Wip(J) is inverse closed in B(LP(])).

Proof. Setting ap := xjao + xpy and a, := xja, (n # 0), we get the operator

A= ZEHU;:’ c W,.

nez,

Since J C Iis a-invariant, A = diag {A, I} in B(LP) = B(LP(J)+LP(I\J)). Hence, A is invertible
on L* whenever A is invertible on L?(J). Applying Theorem 3 to A4, we get A~ = (4)} Lr(J) €
Wpll). =

2.4. Inverse closedness of 2, in B(LF)

Since the Wiener algebra W, is dense in the algebra 2, from Theorem 3 we immediately get
the tollowing.

Corollary 5. The algebra 2, is inverse closed in B(LP).
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3. Relations with discrete operators

3.1. Direct integral of spaces [”

Let 1 < p £ oo. By analogy with [16, Chapter V, Section 26.5|, we say that a vector-valued
function

fiv =10, t— {fn(t)}neZ (19)

foiy—Co t—= (f(t),n) =D fult),

nez

is measurable on v with respect to the Lebesgue measure. Since

17Ol = (C1@.e0f) . 1<p<on,  1fE)m = supl(F(E), el

keZ,

where e, € 19, (ex)r = 1 and (ex)n = 0 (n # k), it follows from [16, Chapter I, Section 6.10,
VI and VII] that for a measurable vector-valued function (19), the non-negative function ¢ —

1 f(#)]|;» is measurable on v as well.
Further we consider the Banach space LP(~,IP) of all measurable vector-valued functions

f v — [P with the norm

L/p
iy = ([ 1508 at) " 1p<o0, Ifllieim = esssup £ Ol
Y Y

Thus, a function f € LP(~,[?) is defined on v with the possible exclusion of a set of measure
zero. For 1 < p < oc, the space LP(,IP) is called the direct integral of spaces IP.

Let L£(lp) be the algebra of all linear (but in general unbounded) operators acting on Ip.
Following (16, Chapter V, Section 26.5], an operator-valued function A : v — L(I?) is said to
be measurable it A(t) € L(IP) is defined for all ¢ € v with the possible exclusion of a set of
measure zero, and for an arbitrary measurable vector-valued function € : v — [P, the vector-
valued function A¢ : v — P, t — A(t)&(t) is defined for almost all ¢ € v and is measurable
on ~.

It A:~v — L([P) is a measurable operator-valued function, then according to {16, Chapter V,
Section 26.5, II|, we conclude that for p € [1,00) the non-negative function ¢t — A | By is
measurable on v too. If p = o0, then again the function

JAC) leey = sup Y | (A en, &)

1€ ne’

is measurable on v as the supremum of the sequence of the non-negative functions 3 |a;,(+)!
ne

which are measurable on v together with a;,(-) := (A(:)en, ;).

Proposition 6. A measurable operator-valued function A :~v — L({IP), t — A(t) defines a
bounded linear operator

Ma: DP(, 1) = DP(n 1), (Maf)(t) = ABF(E), te .
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if and only if the function t — || A(t)||sr) belongs to L>°(v). In that case,

“MAH’B(LP(%W)) = H”A(-)“sB(lp) Lm(v).

Proof. Sufficiency for all p € [1, 00| and necessity for p € [1, 00) are proved by analogy with
116, Chapter V, Section 26.5, III]. Let us prove necessity for p = oo.
Suppose M4 = A(-)I € B(L>*(~,[°°)}). Then

| A(t)]| By = sup Z la;n ()] for almost all ¢ € +.
el nez

Assume that the function t — || A(t)|lg() does not belong to L°°(y). Then for every m € N
there is a measurable subset +,, C v such that mes~,, # 0 and

sup Z lain(t)| > m+1 for almost all ¢ € v,,.
€z neZ

Then there are 17,, € Z and measurable subsets A,, C 7, such that mes A,, # 0 and

A gy = Y lain(t)] = m  for almost all ¢ € Ay, (20)
nez

Forte v, me€N, and n € Z, set

£ (8) = { Binn(t)/ |00 (8)] 3 ain(t) # 0,
L if  a;,n(t) = 0.

(21)

As every function f,&m) Is measurable on < together with a; () = (A(')en,e;.. ), the vector

functions
O ry =10t (™ (1) ez
belong to L>°(~,[*°) and have norm 1. Hence, from (20)-(21) we get for m € N,

| Alls(zoo (y,10)) 2 ITAC)F™ ()l oo (y,000) > €8s Inf LA@) F™ ()l

A

> e?esggf (suplz am(t)f?(lm)(t):) > ess inflz ai._n(t) 1 (t)l — essinf ;Z ;. (2)] > m,
n

: te A, tcA

which contradicts the bo.undedness of the operator M4 on L*°(~,1°°). Thus, the function t —
I A(%)lsg(10) belongs to L°(v). =

3.2. Invertibility of functional operators in terms of discrete operators

Below we apply the results of Section 3.1 to study the invertibility of functional operators.
Introduce the isometric isomorphism

o LX(1) = LP(v,IP), [t where iy—  te (UM)(OInez-  (22)

Lemma 7. If A € A,, then the operator A:=cAc ¢ B(LP(~v,IP)) is given by (Z@b)(t) =
~A(t)Y(t) for almost all t € -y, where A is an operator-valued function in L (v, B(IP)) which has
~ the form -
' A(t) = (aj__z-[ai(t)])z-,jez fOT almost all 1 € Y. (23)
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Proof. First suppose A € W, that is, A has the form (3) and satisfies (4) with J = 1. For
Y € LP(v,IP) and almost all ¢t € v, we get

(Ap)(t) = (Ao 0)(t) = { 3 anla @] (U307 9) (0} = { D anlos(t)irn(®}

nez nez

= { el 0} = (ar-loatt)]), (850} sen = AW(0)

jEZ

that is, the operator A€ B(LP(v,P)) is the operator of multiplication by the matrix function

(23) where a,, are the coeflicients of the operator A.
Clearly, the operators A(t) belong to £(I?) for almost all £ € . Since all the entries a;_; o o
of the matrix function A belong to L*°(~), we have for almost all ¢ € v and all ¢, 5 € Z,

la;—i[i(t)]] < |laj—io aillpe(y) < llaj-illzee. (24)

It follows from (24) and (4) that for almost all ¢ € ~,

JA®) ey < D llanllze = [|Allw, < 0. (25)

nez

Hence, A(t) € B(IP) for those . -
Let us show that the operator-valued function A : v +— ‘B({?) is measurable. For every
measurable vector-valued function & : v — [P and every n € [9, it follows from (24) and Holder’s

inequal@ty that

STABER)nTa] <Y Majoilleole Ollml <Y llanllze Y 1€ ) 1j-nl

nez | €2, jEZ ne 1€EL

!

< | Allw, [IE(E) e limllis < oo (a.e. on ). (26)

Since the functions t — a,_;|a;(t)] and ¢ — £;(t)7; are measurable on v, it follows from (26)
and [16, Chapter I, Section 6.10, VII| that the function

CAen iy —C te Y (ABE)aT, = Y Y ajglos(t)]E; ()7,
ne €L JeL

is well defined for almost all ¢ € v and is measurable on . This means, by definition, that
the operator-valued function A is measurable on ~. As was shown before, A defines a bounded

linear operator

A:LP(y,IP) = DP(, 1), (A9)() = A@R)g(t), tev
Then due to necessity in Proposition 6, the function ¢ + ||.A(%)||s(») belongs to L>°(~) and

= ||Alls(Lr(y.0r))-

[11AC) s |

Lo ()

Thus, the assertion 1s proved for the algebra W, which is dense in ,. "Io get the assertion
for the whole algebra 21, it only remains to make use of the extension by continuity.
Indeed, if A € 2A,\W,, then there is a sequence {A,,} C W, such that lim [|[A—A,| g = 0.
T — 3O

In that case the operator-valued function A : v — B(I?) is defined as the limit of the sequence
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of the operator-valued functions A, € L*(y, B(IP)) in L=(y, B(iP)). Clearly, A also belongs to
L®(~,B(IP)), A has the form (23), and A is independent of a choice of the sequence {A,} C W,.

'..-:.jl‘he functions t +— a;;(t) = (A(t)e;, ei) are equal to lm ag‘)(-) in L°°(~), where ag-”)(t) =
_ TL— OO

};ff"--:An(t)ej, e;) are the entries of the band-dominated (see, e.g., [17]) operators Ay, (t) € B(lF). =

~ Let §; ; stand for the Kronecker delta. From (23) it follows directly that the operator-valued
functions A € L (v, B(IP)), associated with operators A € 2, by Lemma 7, satisty the following

“important relation evoked by (1).

Lemma 8. If A € 2, then for almost allt € v and alin € Z,
A[an(t)] — V”A(t)V“‘” where V = (5i,j--l)i,j€Z*

Now we are in a position to formulate the main result of this section.

Theorem 9. An operator A € 2, is invertible on LP if ana only if for almost all t € ~
. the operators A(t), given by Lemma 7, are invertible on [P and the operator-valued function
. ALy B(LP), t— (A1) belongs to L®(y, B(IP)), that is, A~ is measurable and

< 00. (27)

H1(AC)  hmemy

|L°‘“(’r)

arp g e Pl Do P B S B e
: e D b S il YA e
AR A TR L

Proof. Necessity. 1f an operator A € A, is invertible on [P, then in view of Corollary 9,
there exists B := A~} € A Then the operator B:=c¢Bole B(LP(~, P )) is inverse to the
operator A = cAc~! € B(LP(v,IP)). Since, by Lemma 7, A = A()I and B = B(-)I, where
. A,B e L®(v,B(1)), the equality B = (4)~" implies that B = .A™". This means that for almost
. all t € v the operators A(t) are invertible on i” and A"t e L*°(~,B(IP)). Necessity is proved.
Sufficiency. If for almost all ¢ € v the operators A(t) are invertible on the space P and (27)
is fulfilled, then by sufficiency of Proposition 6, the measurable essentially bounded operator-
valued function B : v — B(P), t (A(t))ﬂl generates the bounded linear operator B =
B()I € B(LP(v,IP)). Since B = A~ the operator B is the inverse operator for A= A()I €
B(LP(~,IP)). Therefore, the operator 5 = o0~ 1Bo is the inverse operator for A = c"l4c. m

. 4. Invertibility of binomial difference operators

= 4.1. Quantities characterizing invertibility

In this section we will find criteria for the invertibility of the difference operator
D :=al — b0V

on the spaces I, 1 < p < oo, where a,b € [°° and the isometric shift operator V' is given by
(Vf)n = fnt1 for n € Z. Clearly, V is invertible on (¥, and one can check straightforwardly the
 following.

Proposition 10. Forc € [*, the spectral radius of operators ¢V and V= lonlP,1<p< o0,
18 calculated by | .

1/n
r(c) ;= lim | sup|Ck+1Ck+2 - - - Ck+n]| .
n=00 \keZ
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Proposition 11. Suppose there exist C > 0 and m € Z such that 0 < C < |¢,| < +00 fOT"_{f
neZ\{m}.
(a) For

Ok (c) := limsup |ck_1ck—2. .. Ck-—-nlml/n (k < m),

=+ 00

pt(0) i= limsup lcpsaciar - ipnl /" (k 2 m),
71— 100
we get
0<p (c)<p;(c)<C™' (k<s<m), C <pilc)<pi(c)<+00 (M<k<s) (28)

Moreover, there exist limits

|

lim p(c) €[0,C7Y], pi(c):= lim pf(c) € [C,+o0].

k— —00 k— 400

p-(c) :

(b) If p—(c) > 1, then the function ¢ : Z — C whose values for n < m have the form
pn = deylcpiy ety d € C\ {0},

does not belong to [P.
(¢) If p+(c) > 1, then the function ¢ : Z — C whose values for n > m have the form

fn = dem41Cmt2. .- Cn-1,  d € C\ {0}, (29)

does not belong to [P.

Proof. (a) Let us consider the “positive” case. Suppose m < k < s, then

. l1/n

C C ... C

|Ck+1Ck+2 e Ck+n|l/n — ICs+1Cs+2 . *-Cs+*n,|1/ﬂL ' (“‘" I AR 2 s Sl . -,) n € N. (50)
| Cktn+1Ck+n+2 - - Cotn]

Further. we have

" - * Hn
)"ty (mel) "y

: Cl4+1Ck+2...C
llmsup( Li___t - C |
T 00 (s—k

n— =400 ICk+n+1ck+n+2 RN CS-HLI

On the other hand, for every k > m and every n € N, we obtain C < |cxp1Ck42 - - - Cignlt/™ < :
+00. From the latter inequalities and (30)-(31) we get the second group of inequalities in (28).
The monotonicity of the sequence {pf(c) ff’m implies that the limit p,(c) exists and belongs
to |{C, +00].

The “negative” case is considered analogously. Part (a) is proved. Parts (b) and (c) are
proved using the same idea. Let us prove (c).

Since p4+(c) > 1, by part (a) there exists a number M > m such that prr(c) > 1. Therefore,
there exists ¢ > 1 and a sequence n; — +00 as j — +o00o such that

e B L. L. ' KN _. . -'\-::"':;'_: e I-:.._:-u;.__ll'{....'.
o > Y : ..|'_l"'_ . . -\..I - - '._I'I i - L ) ._.-\._:':. I l‘:l.\,:ﬁl' '.."-'u'.-l_:_-". Iy -\:.\_ _:'\-'."_'__-C' e -\._'.:1' lq,!;':l'\"'l )
i s e e F gty e e st i o S b g ne il 2l g 7

eremet - Crpny [V > g > 1, jEN. (32)
Then, taking into account (29) and (32), we get |
lollir > |%0M+nj+1| > |demt1Cmas - cpm-1|¢" — +o0 as  j — +o0

whenever d € C \ {0}. Proposition is proved. m
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4.2. Non-invertibility conditions
Let the both coefficients degenerate. If b, # 0, we put ¢, := a, /b, for n € Z.

Proposition 12. Suppose a,b € [°°, and there exist k,m € Z such that

a4, 20 for neZ\{k}, bn #£0  for neZ\{m), 4 =bm=0.  (33)

~ Then the operator D is not invertible on [P.

Proof. Assume that the operator D is invertible and consider the following three subcases.

1. If m < k£ then the function ¢ : Z — C given by

0, n < m,
Y n=m-+ 1,
7Y Cmgitma2-. . Cne1, m+2< n <k,
0, n>k+1

satisfies the equality Dy = 0. Since ¢ has finite support, p € IP. Hence, ¢ € Ker D \ {0}

2. It m = k, then the non-homogeneous equation Dy = {é,,.1. }nez, Where Om.n 1S the Kro-
necker delta, is unsolvable on ¥ because, in view of (33),

% 0 = AmPm — bm@m—f—l # 5m m — L. | (34)

3. It m > k, then the non-homogeneous equation Dy = {6,, n }nez is unsolvable on [P agam
because from the system

2

AnPn —bpny1 =0 (n=kk+1,...,m—1)

it follows, due to ap = 0, that pr 1 = Yrio = o= gom = (J, and hence, we get (34) again.
Thus, in each subcase we get a contradiction. =
Now we consider the case when the second coefficient vanishes only at one point.

Proposition 13. Suppose a € GI*°, b € [*°, and there exists m € Z such that b,, = 0 and
b,, # 0 foralln £ m. If py(a/b) < 1, then the operator D is not invertible on IP.

Proof. Taking into account that b,, = 0, a,, %= 0 and a, b, 7 0 for all n # m, we deduce
that the function ¢ : Z — C given by

E O: T g e,
E Pp = 1, n=m+ 1, (35)

satlsﬁes the equation Dy = 0. Since py(a/b) < 1, from Proposition 11(a) we get p;} (a/b) < 1.
Then by definition, there exist numbers ¢ € (0, 1) and /V € N such that

T hus, |on| < ¢"7™ for |n| > N. Therefore, the function ¢ given by (35) belongs to {P. Conse-
quently, w € Ker D \ {0}. This means that D is not invertible. m

??f'li’-’:‘ﬂﬁ%?’t‘%?}-Eﬁﬁ‘!"ﬁfﬂ?ﬂfﬂlii‘m" ?."i’ii'-‘”‘-ﬂ??-'*-?-:”:?’*i’f"‘""r'_'"i'“é FETAT R

|
L Eﬁ"?.":_."‘".i':_:-:'-f
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Finally, we consider the case when the both coefficients do not vanish on Z.

Proposition 14. Suppose a,b € GI™°. If pi(a/b) < 1 and p_(a/b) < 1, then the operator :

D 1s not invertible on [P.
Proof. 1t p_(c) < 1 and p4(c) < 1, then there exist numbers ¢ € (0,1) and N € N such
that
lc_1cg. e VM <g< 1, Jegey...on P < g < 1,

for all n > N, respectively. Therefore, the function ¢ : Z — C given by

~1,.~1 -1 _
cn Cﬂ"f‘l e C-—-l? n < O?
CoC1 . . - Cn—1, n >0

belongs to (P, in view of the estimate |p,| < g™ for in| > N. It is easily seen that ¢ € Ker D\ {0}.
Thus, D 1s not invertible. m :

Proposition 15. Suppose a € I, b € I, and by # 0 for all n € Z. If r(b/a) > 1 and
p+(a/b) > 1, then the operator D is not invertible on IP.

Proof. Assume that the operator D is invertible on IP. Since r(b/a) > 1, there exist numbers ;:if-"’ﬁf
q > 1 and M € N such that for every m > M there exists k,,, € Z for which

1 ) _q 1/m

Com—1Chr o Co >q> 1. (37)

Consider the non-homogeneous equation Dy = {0k, »}nez. It is equivalent to the system

CnPn — Pn4l = 5km,n/bn (n ~ Z)-

This equation can have only the solution o™ :Z — C given by

dcglc,;;_il . .,c];'”];__l, n < km,
w(m) _J 4 | n = Kkm,
b dckm“‘l/bkm: n = Ky + 1,

(dck*m T 1/bk’n})ck’7n+lckm+2 P Cn‘“l? n > km + ]"!

where d € C. It follows from Proposition 11(c) that ™ would belong to I? only if d = 1 fag. .
On the other hand, from (37) it follows that
-1 -1 -1 ~1

|
”‘P(m)Hm > Igogcz)_ml = % Chr ~1Ck =2 Chor —m| > Cq — +00 as m — +oo,

where C' > 0 is the lower bound of |a,,|”! for n € N. But this contradicts the invertibility of D
because for every m > M,

™| < 1D~ 3wy {0k, 0 Inezllip = 1D ey < +00. =

Proposition 16. Suppose a,b € GI*. Ifr(a/b) > 1 and p_(a/b) > 1, then the operator D
18 not invertible on [P. |

T'his statement is proved by analogy with Proposition 15 making use of Proposition 11(b).
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~ 4.3. Invertibility criterion
Now we are in a position to prove the main result of this section.

Theorem 17. Suppose a,b € [°°. The operator D := al — bV 1is invertible on Zp iof and only
- if one of the following two alternative conditions holds:

(1) ;Iel% lap| >0 and r(b/a) <1, (11) lerelfilb nl >0 and T(a/b) (38)

~ If D 18 wnvertible, then its inverse is given by

D! = i((b/a)V)na"‘lI in case (1); Dl =_y-! i((a/b)V‘"l)nb"lf in case (1i).
n=0 n=0

(39)
Proof. Sufficiency. Let a € GI*® and r(b/a) < 1. Then D = a(I— (b/a)V), where b/a € I*.
- Since the operator al is invertible on [? and since the operator I — (b/a)V also is invertible on [P
~ in view of the inequality r(b/a) < 1, we infer that D is invertible on [P too, and its inverse is given
- by the first formula in (39). Sufficiency of (ii) and (39) in case (ii) are obtained analogously.
Necessity. Assume D is invertible on [P and (38) does not hold. Then one of the following
~ four conditions is satisfied.
1. Let inf |a,| = 0, lgglbnl = 0. Then for every € > 0 there exist a,b € [™ and k,m € Z

- such that

Ll

an#0 for neZ\{k}, bn 0 for neZ\{m) ar = by = 0,

and [la =@l < /2, ||b—bljie < /2. If £ is sufficiently small, then the operator D := al — bV
I8 invertible together with D because ||D — D”‘B(ZP) < . But, on the other hand, D is not
invertible, due to Proposition 12. So, we arrive at a contradiction.

2. Let 12% la,| > 0, mf o] =0, r(b/a) > 1. Then either by, = 0 for some m € Z, or b, # 0
n

for all n € Z but Hel% ]bnl = O Consider these two subcases separately.
n

(a) If by, = 0 for some m € Z, then for € > 0 we define the functions b, be 1 Z — C by

bn, |bn| =€, n#m, N

(be)n =< &, |bal<e, mn#m,  be:=(1+¢e)b,. ' (40)
0, n=m,

gThen, by Proposition 11(a), the quantities p, (a/b.) and p.(a/be) are well defined. Moreover,
r(be/a) = (1 +€)r(b./a) > r(be/a) > r(b/a) 2 1, -py(afbe) = (1+&)Lpas(afb).  (41)

- Ifps(a/be) <1, then we put b := b, and choose € > 0 so small that the operator f) = ql—bV
- Is invertible together with D, and p+(a/b) < 1 by (41). But, on the other hand, by, = 0 and
bn #* 0 for all n # m. Hence, by Proposition 13, the operator D is not invertible.

- If p+(a/b;) > 1, then consider the function b € GI* given by

n -

b { (1+¢e)(be)n, n#m,

Tl (1+e)e, n = m.
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By (41), we get T(g/ a) > 1. Further, we can choose € > 0 80 small that p+(a'/‘g) = pif{a /35) > 1
and the operator D := al — bV is invertible together with D. On the other hand, by Proposi-
tion 15, the operator D is not invertible. | i

(b) If b, # 0 for all n € Z but ffé% by| = 0, then, by Proposition 11(a), p+(a/b) is well -

defined. N
If p4(a/b) > 1, then we can choose £ > 0 so small that for b := (1 + )b we have

r(b/a) = (1+e)r(b/a) > r(bfa) > 1, pi(a/b) =(1+¢) 'pir(a/b) > 1, (42) a

and the operator D := al — bV is invertible together with D. On the other hand, in view of

F o

Proposition 15, the operator D is not invertible.

If p4(a/b) < 1, then for a given € > 0 there exists m € Z such that |by,| < €. We consider the
function b := b, where b, is given by (40). Then, taking into account (41), we have p, (a/b) < 1
and b,, = 0. Clearly, we can choose € > 0 so small that the operator D) := al — bV is invertible
together with D. On the other hand, the operator D is not invertible, due to Proposition 13.

Thus, case 2 is completely considered. .
3. Let inf lan| = 0, inf ba| > 0, 7(a/b) 2 1. Then for the operator bl — aV~!, all the
ne 7 . ,

conditions of the previous case are satisfied. Hence, by case 2, the operator bl — aV ™ is not
invertible. On the other hand, the operator bI —aV ~! is invertible on [P simultaneously with D.

4. Let ig%]anl > (), inybnl >0, r(b/a)>1, r(a/b) > 1. In this case the characteristics
n . NE
p+(a/b) are well defined, due to Proposition 11(a), and one of the following three conditions is

fulfilled.
(a) If py(a/b) <1 and p_(a/b) <1, then setting

- (14 ¢e)b,, n >0,
" (1 —¢)b,, n <0,

where € € (0,1), we get

e ™

o4(a/b) = (1 +¢)Lpi(a/b) < pi(a/b) <1, p_(a/b) = (1 —¢)p-(a/b) < p-(a/b) < 1. (43)

Since ||b — b||jc < €]|b]j;, We can choose € so small that the operator D := al — bV is invertible
together with D. But, by Proposition 14 and (43), the operator D is not invertible.

(b) If p(a/b) > 1, then setting b := (1 + )b and choosing a sufficiently small € > 0, we get
(42), which contradicts the invertibility of the operator D := al — bV, by Proposition 15.

(c) If p_(a/b) > 1, then put @ := (1 + €)a where ¢ > 0. Therefore, for a sufliciently small

e > 0,
r(a/b) = (1 +¢e)r(a/b) > r(a/b) =1, p_(a/b)=(1 +¢e) tp_(a/b) > 1. (44)

We can choose ¢ so small that the operator D := al — bV is invertible together with D. On the
other hand, from (44) and Proposition 16 we deduce that the operator D is not invertible. This

completes the proof in case 4.
Thus, in all the cases 1-4 we get contradictions, that completes the proot. m

5. Invertibility criteria for binomial functional operators

In this section we get invertibility criteria on LP,1 < p < oo, for functional operators of the form

A = al - bU, (45)
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where a,b,loga’ € L. By Lemma 7, with the operator (45) we associate the operator-valued
function A € L°°(v,B({?)) given by

A:t— (a[ai(t)]fsi,j — b[ai(t)]&’j_l)i,jez’

where 0; ; is the Kronecker delta. Considering vectors in [P as complex-valued functions on Z,
we can rewrite the operators A(t) € B([?), defined for almost all ¢ € v, as difference operators
of the form

Ay =al — b,V € BUP),  ar:nes alan(t), by:ne blan(t)] (ne Z)

Here a4, by belong to [*° and the isometric shift operator V' is given by (V f), = fr11 for n € Z.
From Theorems 9 and 17 we directly obtain the following criterion.

Theorem 18. The operator (45) is invertible on the space LP if and only if for almost every
t € v one of the following two alternative conditions holds:

(i) ?111;% lalan(t)]] >0 and r(bi/ay) < 1, (i1) 7111'6112'7 blan(t)]l >0 and r(a;/by) <1,

and the operator-valued function t — (A(t))™!, where (A(t))™! is the matriz of the difference

- operator
oG

Z((bt/at)\/)n(at)"lf in case (1),
(A) " =q ™0 i ' (46)
_y-1 Z((at/bt)V'l) (be)"LI in case (ii),
n=() |

belongs to L™ (v, B(IP)).

Making use of Theorem 18 and Corollary 4, we get the following more pleasant criterion.

Theorem 19. The operator (45) is invertible on the space LP if and only if there GSCZStS
partitioning of I into two measurable a-invariant subsets I, and I such that

() a€GL®W). r(((B/a)Va)lisq,) < 1

\

(i) be GL™(L), r(((a/b)(jc;l)lm(ﬂb)) <1

. Proof. Sufficiency. Let mesl, > 0 and mes[, > 0. Taking into account that the measurable
- sets [, and [ are a-invariant, we get

~ and

A = diag {41, Ao} € B(LP(I,)+LP(Iy)) where Ap:= Alppq,), A2 := Alrrq,). (47)

- By (i) and (ii), the operator restrictions (I — (b/a)Ua)ILP(Hﬂ) and (I — (a/b)Ugl)\Lp(ﬁb) are in-
- vertible. Hence,

o0 o0
ATl = Z((b/a)Ua) o Ixol, A7l=—U7? Z((a/b)vgl) b~y (48)
1t=0) n=0
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where X, and X, are the characteristic functions of I, and I, respectively. Finally, (47) and (48)
imply that the operator A = al — bl is invertible too, and

A1 = i((b/a)Ua)na"lxaI _ -t i((a/b)z;f;l)”b‘lm (49)

n=0 n=~0

Clearly, (49) remains valid if mesI, = 0 or mes], = 0. Sufficiency is proved.
Necessity. If A is invertible, then for almost every ¢ € v one of the conditions (i)—(ii) of

Theorem 18 is fulfilled. Let ~, denote the set of £ € v for which condition (i) of Theorem 18

holds, and v := v \ 74. “
Setting

Iy := U a’ﬂ(’?’G)a Iy := U a’ﬂ('}'b)&

ne neZ

we infer from (1) that I = I, Uy, 1o NI = 0, and «(l,) = I, a(ly) = 1. Clearly, in view of
(46), the matrix of the operator (A;)~! has the form

(AW = (cj-ilei(®))ijez, teEn,
where for almost all t € ~,

b(t) bla(t)] blan—-1(t) Xa(f_)__ ne{0,1,2,...)

_ ) a® ala(®)] " alan-1(8)] alen ()]
2= aan®)aloa®]  alana(®] o0

bla-1(t)] bla—2(t)] T bansa (1)) blom(t)]

By Lemma 8, the formulas (50), defining the entries of (A(-))™*, are valid for almost all t € I.
Since, by Theorem 18, the matrix function A4~! : ¢ +— (A(t))™! is measurable on v, so is its
(0, 0)-entry

l—-l-llll——._"'—‘

co = (A eq, e0) = xa/a,

which implies the mea,sura,blhty of the sets v, = {t € v : co(t) = 0} and v, = v\, Consequently,
the both sets I, and I, are measurable too. Moreover, since A7 € L®(~, B (¥ )), we conclude
that cpoan, = xa/(acan) € L*®(vy) for all n € Z. Hence, a € GL*(1,). Analogously, b € GL*®(I;).

Let mesvy, > 0 and mes~, > 0. Since the sets I, and [, are a-invariant and since A is
invertible on LP, it follows from (47) that the restrictions A1 and A, are invertible on LP(I,)
and LP(I,), respectively. As A7' = (o7 14! o)|rq1,) and At = (671 A o) | 1p (1) Where ois

given by (22), we derive from (50) that, by analogy w1th (46), the Operators A-—l and A have ._,5:_::
the form (48). On the other hand, by Corollary 4, A" € W,(I,) and A, € W (I). Thus

0

AT =) cUn e Wo(la), Ayl == c_aUs™ € Wy(ly),

n=0

where ¢, are given by (50) for £ € . Hence,

Z”Cn“w < o0, }:lrc_num 1) < 0. (51)
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Due to the Beurling-Gelfand formula for the spectral radius,

r1 = T(((b/a)Ua)ILP(]Ia)) = im flen(ac a”)“l/n( la) lin ”Cﬁlli&(ﬂﬂ)’

— =400 n-—+40C

_ 1 1
ro =1 (((@/D)Us ey ) = lim_lleon(boan)lf2y, = lim flenl}q,,

(92)

By the Cauchy test for the convergence of positive series, from (51) and (52) we get r; < 1 and
ro < 1. Since the invertibility of A is stable under small perturbations of coefficients, it is easily
seen that actually i < 1 and ro < 1.

The cases mesy, = 0 and mes~y, = 0 are considered analogously.
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