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Abstract Let Ω ∈ {R+,R}, 1 < 𝑝 < ∞, 1 ≤ 𝑞 < ∞, and Φ be a Young’s function
satisfying the (𝛿2,Δ2)-condition and lim𝑥→0+

Φ(𝑥 )
𝑥

= 0. Suppose 𝑋 (Ω) is the Lorentz
space 𝐿 𝑝,𝑞 (Ω) or the Orlicz space 𝐿Φ (Ω). We show that if 𝑎 is a Fourier multiplier
on 𝑋 (R), 𝑊0 (𝑎) is the corresponding Fourier convolution operator on 𝑋 (R), and
𝑊 (𝑎) is the corresponding Wiener-Hopf operator on 𝑋 (R+), then the operator and
essential norms of𝑊0 (𝑎) on 𝑋 (R) and of𝑊 (𝑎) on 𝑋 (R+) are all the same.

1 Introduction and main result

For a Banach space X, let B(X) denote the Banach algebra of all bounded linear
operators on X and K(X) denote set of all compact linear operators on X. The
operator norm of an operator 𝐴 ∈ B(X) is denoted by ∥𝐴∥B(X) and its essential
norm is defined by

∥𝐴∥B(X) ,e := inf
𝐾∈K (X)

∥𝐴 + 𝐾 ∥B(X) .

For 𝑓 ∈ 𝐿1 (R), let 𝐹 𝑓 denote the Fourier transform

(𝐹 𝑓 ) (𝜉) :=
∫
R
𝑓 (𝑥)𝑒𝑖𝑥 𝜉 𝑑𝑥, 𝜉 ∈ R.
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If 𝑓 ∈ 𝐿1 (R) ∩ 𝐿2 (R), then 𝐹 𝑓 ∈ 𝐿2 (R) and ∥𝐹 𝑓 ∥𝐿2 (R) =
√

2𝜋∥ 𝑓 ∥𝐿2 (R) . Since
𝐿1 (R)∩𝐿2 (R) is dense in 𝐿2 (R), the operator 𝐹 extends to a bounded linear operator
of 𝐿2 (R) onto 𝐿2 (R), which will also be denoted by 𝐹. The inverse of 𝐹 is given by
(𝐹−1 𝑓 ) (𝑥) = (2𝜋)−1 (𝐹 𝑓 ) (−𝑥) for a.e. 𝑥 ∈ R.

Let 𝑋 (R) be a Banach function space and 𝑋 ′ (R) be its associate space - their
technical definitions will be postponed to Section 2.1. The class of all Banach
function spaces is very broad: it includes Lebesgue spaces, Orlicz spaces, Lorentz
spaces, and variable Lebesgue spaces. For our purposes, the separability of 𝑋 (R)
will be necessary so that 𝐿2 (R) ∩ 𝑋 (R) is dense in 𝑋 (R) (see, e.g., [6, Lemma 2.2]).

Let 𝑋 (R) be a separable Banach function space. A function 𝑎 ∈ 𝐿∞ (R) is called
a Fourier multiplier on 𝑋 (R) if the operator

𝑊0 (𝑎) 𝑓 := 𝐹−1 (𝑎 · 𝐹 𝑓 ),

maps 𝐿2 (R) ∩ 𝑋 (R) into 𝑋 (R) and extends to a bounded linear operator on 𝑋 (R).
The operator 𝑊0 (𝑎) is called Fourier convolution operator and the function 𝑎 will
also be referred to as the symbol of𝑊0 (𝑎). The set M𝑋 of all Fourier multipliers on
𝑋 (R) is a unital normed algebra under pointwise operations and the norm

∥𝑎∥M𝑋
:=



𝑊0 (𝑎)



B(𝑋 (R) ) .

Recall that the Hardy-Littlewood maximal function 𝑀 𝑓 of a function 𝑓 ∈ 𝐿1
loc (R)

is defined by

(𝑀 𝑓 ) (𝑥) := sup
I∋𝑥

1
|I |

∫
I
| 𝑓 (𝑡) | 𝑑𝑡,

where the supremum is taken over all bounded intervals I ⊂ R that contain 𝑥 and
|I | denotes the length of I. The Hardy-Littlewood maximal operator 𝑀 is defined
by the rule 𝑓 ↦→ 𝑀 𝑓 . If 𝑀 is bounded on a separable Banach function space 𝑋 (R) or
on its associate space 𝑋 ′ (R), then M𝑋 is a Banach algebra (see [6, Corollary 2.4]).

Let Ω ∈ {R+,R}. In this paper, we will consider one of the following Banach
function spaces: a Lorentz space 𝐿 𝑝,𝑞 (Ω) with 1 < 𝑝 < ∞ and 1 ≤ 𝑞 < ∞ or an
Orlicz space 𝐿Φ (Ω) with the Young’s function Φ satisfying the (𝛿2,Δ2)-condition
and

lim
𝑥→0+

Φ(𝑥)
𝑥

= 0. (1)

We refer to [1, Chap. 4], [11, Chap. II], [12, Chaps. 4 and 8] and also to Sections 2.4
and 2.5 for the definitions and basic properties of these Banach function spaces.

Consider the restriction operator 𝑟+ from 𝑋 (R) into 𝑋 (R+), along with the zero
extension operator ℓ+ from 𝑋 (R+) into 𝑋 (R). Given 𝑎 ∈ M𝑋, the Wiener-Hopf
operator with symbol 𝑎 is defined by the formula

𝑊 (𝑎) := 𝑟+𝑊0 (𝑎)ℓ+.

The aim of this paper is to extend basic equalities for the operator and essential
norms of the operators 𝑊0 (𝑎) and 𝑊 (𝑎) known for the case of Lebesgue spaces
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𝐿 𝑝 (Ω) (see [2, Section 9.5(a)–(b)] and [5, Proposition 2.2]) to the setting of Lorentz
and Orlicz spaces.

Our main result is the following.

Theorem 1 Let Ω ∈ {R+,R}, 1 < 𝑝 < ∞, 1 ≤ 𝑞 < ∞, and Φ be a Young’s
function satisfying the (𝛿2,Δ2)-condition and (1). Suppose 𝑋 (Ω) is the Lorentz
space 𝐿 𝑝,𝑞 (Ω) or the Orlicz space 𝐿Φ (Ω). For every 𝑎 ∈ M𝑋, we have

𝑊0 (𝑎)




B(𝑋 (R) ) = ∥𝑊 (𝑎)∥B(𝑋 (R+ ) ) =



𝑊0 (𝑎)



B(𝑋 (R) ) ,e = ∥𝑊 (𝑎)∥B(𝑋 (R+ ) ) ,e.

The paper is organized as follows. In Section 2, we recall definitions of
rearrangement-invariant Banach function spaces and their Boyd indices. Further,
we give definitions and recall some properties of Lorentz spaces and Orlicz spaces,
being the most prominent examples of rearrangement-invariant Banach function
spaces. In Section 3, we recall the notion of limit operators and compute the limit
operators of multiplication by the characteristic function of R+ and of compact op-
erators on rearrangement-invariant Banach function spaces. Armed with the results
of Section 3,we prove Theorem 1 in Section 4 following some ideas borrowed from
the monographs by Duduchava [5] and Böttcher and Silbermann [2].

2 Preliminaries

2.1 Banach function spaces

Let R+ := (0,∞) and Ω ∈ {R+,R}. The set of all Lebesgue measurable extended
complex-valued functions on Ω is denoted by 𝔐(Ω). The subset of functions in
𝔐(Ω) whose values lie in [0,∞] will be denoted as 𝔐+ (Ω). The Lebesgue measure
of a measurable set 𝐸 ⊆ Ω is denoted by |𝐸 | and its characteristic function by 𝜒𝐸 .
Following [1, Chap. 1, Definition 1.1], a mapping 𝜌 : 𝔐+ (Ω) → [0,∞], is called a
Banach function norm if, for all 𝑓 , 𝑔, 𝑓𝑛 ∈ 𝔐+ (Ω), 𝑛 ∈ N, for all constants 𝑐 ≥ 0,
and for all measurable subsets 𝐸 of Ω, the following properties hold:

(𝐴1) 𝜌( 𝑓 ) = 0 ⇔ 𝑓 = 0 a.e., 𝜌(𝑐 𝑓 ) = 𝑐𝜌( 𝑓 ), 𝜌( 𝑓 + 𝑔) ≤ 𝜌( 𝑓 ) + 𝜌(𝑔);
(𝐴2) 0 ≤ 𝑔 ≤ 𝑓 a.e ⇒ 𝜌(𝑔) ≤ 𝜌( 𝑓 ) (lattice or ideal property);
(𝐴3) 0 ≤ 𝑓𝑛 ↑ 𝑓 a.e ⇒ 𝜌( 𝑓𝑛) ↑ 𝜌( 𝑓 ) (Fatou property);
(𝐴4) |𝐸 | < ∞ ⇒ 𝜌(𝜒𝐸) < ∞;

(𝐴5) |𝐸 | < ∞ ⇒
∫
𝐸

𝑓 (𝑥) 𝑑𝑥 ≤ 𝐶𝜌( 𝑓 )

for some constant 𝐶 = 𝐶 (𝐸, 𝜌) ∈ (0,∞) depending on 𝐸 and 𝜌 but independent
of 𝑓 . Identifying functions that only differ on a set of measure zero, one defines a
Banach function space as
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𝑋 (Ω) := { 𝑓 ∈ 𝔐(Ω) : 𝜌( | 𝑓 |) < ∞} .

For each 𝑓 ∈ 𝑋 (Ω), the norm of 𝑓 is defined by

∥ 𝑓 ∥𝑋 (Ω) := 𝜌( | 𝑓 |).

Under the natural linear space operations, (𝑋 (Ω), ∥ · ∥𝑋 (Ω) ) becomes a Banach space
(see [1, Chap. 1, Theorems 1.4 and 1.6]). If 𝜌 is a Banach function norm, its associate
norm 𝜌′ is defined on 𝔐+ (Ω) by

𝜌′ (𝑔) := sup
{∫

Ω

𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥 : 𝑓 ∈ 𝔐+ (Ω), 𝜌( 𝑓 ) ≤ 1
}
, 𝑔 ∈ 𝔐+ (Ω).

By [1, Chap. 1, Theorem 2.2], 𝜌′ is itself a Banach function norm. The Banach
function space 𝑋 ′ (Ω) determined by 𝜌′ is called the associate space of 𝑋 (Ω).

2.2 Rearrangement-invariant Banach function spaces

Let Ω ∈ {R+,R}. Let 𝔐0 (Ω) and 𝔐+
0 (Ω) be the classes of a.e. finite functions in

𝔐(Ω) and 𝔐+ (Ω), respectively. The distribution function 𝜇 𝑓 of 𝑓 ∈ 𝔐0 (Ω) is
given by

𝜇 𝑓 (𝜆) := | {𝑥 ∈ Ω : | 𝑓 (𝑥) | > 𝜆} |, 𝜆 ≥ 0.

Two functions 𝑓 , 𝑔 ∈ 𝔐0 (Ω) are said to be equimeasurable if 𝜇 𝑓 = 𝜇𝑔. The non-
increasing rearrangement of 𝑓 ∈ 𝔐0 (Ω) is the function defined by

𝑓 ∗ (𝑡) := inf
{
𝜆 ≥ 0 : 𝜇 𝑓 (𝜆) ≤ 𝑡

}
, 𝑡 ≥ 0,

where we use the standard convention that inf ∅ = +∞.
A Banach function norm 𝜌 : 𝔐+ (Ω) → [0,∞] is called rearrangement-invariant

if for every pair of equimeasurable functions 𝑓 , 𝑔 ∈ 𝔐+
0 (Ω) we have 𝜌( 𝑓 ) = 𝜌(𝑔).

In this case, the Banach function space generated by 𝜌 is said to be rearrangement-
invariant.

2.3 Boyd indices

Let Ω ∈ {R+,R} and let 𝑋 (Ω) be a rearrangement-invariant Banach function space
generated by a rearrangement-invariant Banach function norm 𝜌. By [1, Chap. 2,
Theorem 4.10], there is a unique rearrangement-invariant Banach function norm 𝜌

over the half-line R+ equipped with the Lebesgue measure, defined by

𝜌(ℎ) := sup
{∫
R+

𝑔∗ (𝑡)ℎ∗ (𝑡) 𝑑𝑡 : 𝑔 ∈ 𝔐+ (R), 𝜌′ (𝑔) ≤ 1
}
, ℎ ∈ 𝔐+

0 (R+),
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and such that 𝜌( 𝑓 ) = 𝜌( 𝑓 ∗) for all 𝑓 ∈ 𝔐+
0 (R). The rearrangement-invariant Banach

function space generated by 𝜌 is denoted by 𝑋 (R+).
For each 𝑡 > 0, let 𝐷𝑡 denote the dilation operator defined on 𝔐(R+) as

(𝐷𝑡 𝑓 ) (𝑥) := 𝑓 (𝑡𝑥), 𝑥 ∈ R+.

With 𝑋 (Ω) and 𝑋 (R+) as above, let ℎ𝑋 (𝑡) denote the operator norm of 𝐷1/𝑡 as an
operator on 𝑋 (R+). By [1, Chap. 3, Proposition 5.11], for each 𝑡 > 0, the operator
𝐷𝑡 is bounded on 𝑋 (R+) and the function ℎ𝑋 is increasing and submultiplicative on
(0,∞).

The Boyd indices of 𝑋 (Ω) are the numbers 𝛼𝑋 and 𝛽𝑋 defined by

𝛼𝑋 := sup
0<𝑡<1

ln ℎ𝑋 (𝑡)
ln 𝑡

, 𝛽𝑋 := inf
1<𝑡<∞

ln ℎ𝑋 (𝑡)
ln 𝑡

. (2)

By [1, Chap. 3, Proposition 5.13],

0 ≤ 𝛼𝑋 ≤ 𝛽𝑋 ≤ 1.

The following result is a consequence of [1, Chap. 3, Proposition 5.13, Theo-
rem 5.17].

Theorem 2 Let 𝑋 (R) be a rearrangement-invariant Banach function space and
𝑋 ′ (R) be its associate space.

(a) The operator 𝑀 is bounded on 𝑋 (R) if and only if 𝛽𝑋 < 1.
(b) The operator 𝑀 is bounded on 𝑋 ′ (R) if and only if 0 < 𝛼𝑋.

2.4 Lorentz spaces

Let Ω ∈ {R+,R}. For 0 < 𝑝, 𝑞 ≤ ∞, the Lorentz space 𝐿 𝑝,𝑞 (Ω) consists of all
functions 𝑓 ∈ 𝔐0 (Ω) such that the quantity

∥ 𝑓 ∥𝐿𝑝,𝑞 (Ω) :=


( ∫ ∞

0
(𝑡1/𝑝 𝑓 ∗∗ (𝑡))𝑞 𝑑𝑡

𝑡

)1/𝑞
, 0 < 𝑞 < ∞,

sup
𝑡>0

𝑡1/𝑝 𝑓 ∗∗ (𝑡), 𝑞 = ∞,

is finite, where

𝑓 ∗∗ (𝑡) :=
1
𝑡

∫ 𝑡

0
𝑓 ∗ (𝑠) 𝑑𝑠, 𝑡 > 0.

According to [1, Chap. 4, Theorem 4.6], if 1 < 𝑝 < ∞ and 1 ≤ 𝑞 ≤ ∞, then
(𝐿 𝑝,𝑞 (Ω), ∥ · ∥𝐿𝑝,𝑞 (Ω) ) is a rearrangement-invariant Banach function space, with
Boyd indices

𝛼𝐿𝑝,𝑞 = 𝛽𝐿𝑝,𝑞 = 𝑝−1.
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By [1, Chap 4, Theorem 4.7], the associate space of 𝐿 𝑝,𝑞 (Ω) is, up to equivalence
of norms, the Lorentz space 𝐿 𝑝′ ,𝑞′ (Ω), where 1/𝑝 + 1/𝑝′ = 1/𝑞 + 1/𝑞′ = 1.

These observations and Theorem 2 imply that if 1 < 𝑝 < ∞ and 1 ≤ 𝑞 ≤ ∞,
then the Hardy-Littlewood maximal operator 𝑀 is bounded on the Lorentz space
𝐿 𝑝,𝑞 (R) and on its associate space.

By [1, Chap. 4, Corollary 4.8] (see also [12, Corollary 8.5.4]), the space 𝐿 𝑝,𝑞 (Ω)
is separable provided 1 < 𝑝 < ∞ and 1 ≤ 𝑞 < ∞. As a result of this, it follows
that 𝐿 𝑝,𝑞 (Ω) is reflexive if 1 < 𝑝, 𝑞 < ∞ (see [12, Corollary 8.5.5]). Note that both
Corollaries 8.5.4 and 8.5.5 in [12] contain the incorrect condition 1 ≤ 𝑞 ≤ ∞, which
should be replaced by 1 ≤ 𝑞 < ∞ and 1 < 𝑞 < ∞, respectively.

Combining the above observations with Theorem 2 and [6, Corollary 2.4], we
arrive at the following.

Lemma 1 If 1 < 𝑝 < ∞ and 1 ≤ 𝑞 < ∞, then M𝐿𝑝,𝑞 is a Banach algebra.

2.5 Orlicz spaces

Following [1, Chap. 4, Section 8] and [11, Chap. II, Section I], let 𝜑 : [0,∞) →
[0,∞] be increasing and left-continuous with 𝜑(0) = 0. Suppose that 𝜑 is neither
identically zero nor identically infinite on (0,∞). Let 𝜓 denote the left continuous
inverse of 𝜑 defined by

𝜓(𝑣) := inf{𝑢 ≥ 0 : 𝜑(𝑢) ≥ 𝑣}, 𝑣 ≥ 0.

The function𝜓 has the same properties as 𝜑: it is increasing, left-continuous, vanishes
at the origin, and is neither identically zero nor identically infinite on (0,∞). It is
easy to verify that 𝜑 is the left-continuous inverse of 𝜓:

𝜑(𝑢) = inf{𝑣 ≥ 0 : 𝜓(𝑣) ≥ 𝑢}, 𝑢 ≥ 0.

The functions

Φ(𝑢) :=
∫ 𝑢

0
𝜑(𝑡) 𝑑𝑡, 𝑢 ≥ 0, Ψ(𝑣) :=

∫ 𝑣

0
𝜓(𝑡) 𝑑𝑡, 𝑣 ≥ 0,

are called complementary Young’s functions.
Let Ω ∈ {R+,R}. For a Young’s function Φ, the Orlicz space 𝐿Φ (Ω) consists of

all functions 𝑓 ∈ 𝔐0 (Ω) such that∫
Ω

Φ

(
| 𝑓 (𝑥) |
𝜆

)
𝑑𝑥 < ∞,

for some 𝜆 = 𝜆( 𝑓 ) > 0. By [1, Chap. 4, Theorem 8.9], the space 𝐿Φ (Ω) endowed
with the norm
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∥ 𝑓 ∥𝐿Φ (Ω) := inf
{
𝜆 > 0 :

∫
Ω

Φ

(
| 𝑓 (𝑥) |
𝜆

)
𝑑𝑥 ≤ 1

}
,

is a rearrangement-invariant Banach function space. By [1, Chap. 4, Theorem 8.14,
Corollary 8.15], the associate space of 𝐿Φ (Ω) is, up to equivalence of norms, the
Orlicz space 𝐿Ψ (Ω). More precisely,

∥𝑔∥𝐿Ψ (Ω) ≤ ∥𝑔∥ (𝐿Φ ) ′ (Ω) ≤ 2∥𝑔∥𝐿Ψ (Ω) , 𝑔 ∈ 𝐿Ψ (Ω).

Let Φ−1 be the right-continuous inverse of Φ defined by

Φ−1 (𝑡) := sup{𝑠 ≥ 0 : Φ(𝑠) ≤ 𝑡}, 𝑡 ≥ 0.

Then
ℎ𝐿Φ (𝑡) = sup

𝑠∈ (0,∞)

Φ−1 (𝑠)
Φ−1 (𝑠/𝑡)

, 𝑡 ∈ (0,∞) (3)

(see [3, Theorems 5.3 and 5.5] and also [4, Theorem], [1, Chap. 4, Theorem 8.18]).
Note that we use the definition ℎ𝐿Φ (𝑡) = ∥𝐷1/𝑡 ∥B(𝐿Φ (R+ ) )

adapted in [1, Chaps. 3–4],
on the other, hand 𝐷𝑡 is used instead of 𝐷1/𝑡 in [3, 4].

The function ℎ𝐿Φ has the same form for 𝐿Φ (R) and 𝐿Φ (R+). Therefore the Boyd
indices of 𝐿Φ (R) and of 𝐿Φ (R+) are the same and are defined by (2) with ℎ𝐿Φ given
by (3).

Following [11, Chap. II, Section 1, Definition 3], a Young’s function Φ is said to
satisfy the (𝛿2,Δ2)-condition if there is a constant 𝑚 ∈ (0,∞) such that Φ(2𝑢) ≤
𝑚Φ(𝑢) for all 𝑢 ∈ (0,∞).

The following statement is well-known.

Lemma 2 Let Ω ∈ {R+,R} let Φ be a Young’s function. The following statements
are equivalent:

(a) the Orlicz space 𝐿Φ (Ω) is separable;
(b) Φ satisfies the (𝛿2,Δ2)-condition;
(c) 0 < 𝛼𝐿Φ .

Proof. (a) ⇔ (b) was proved in [11, Chap. II, Section 3, Theorem 5]. (b) ⇔ (c)
follows from [3, Lemmas 3.5–3.6 and 5.9]. ⊓⊔

As a consequence of Theorem 2, Lemma 2 and [6, Corollary 2.4], we get the
following.

Lemma 3 If Φ is a Young’s function satisfying the (𝛿2,Δ2)-condition, then M𝐿Φ is
a Banach algebra.
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3 Limit operators

3.1 Definitions and elementary properties

Let X be a Banach space. A sequence (𝑇𝑛)𝑛∈N in B(X) is said to converge strongly
to some operator 𝑇 if for every 𝑥 ∈ X,

lim
𝑛→∞

∥𝑇𝑛𝑥 − 𝑇𝑥∥X = 0.

In this case, we write 𝑇𝑛 → 𝑇 and we refer to the operator 𝑇 as the strong limit of
the sequence (𝑇𝑛)𝑛∈N which we will denote by

𝑇 := s-lim
𝑛→∞

𝑇𝑛.

Let X be a Banach space, 𝑇 ∈ B(X) and U = (𝑈𝑛)𝑛∈N be a sequence of
isometries on X. If the sequence (𝑈−1

𝑛 𝑇𝑈𝑛)𝑛∈N converges strongly to some operator,
then we define

(𝑇)U := s-lim
𝑛→∞

𝑈−1
𝑛 𝑇𝑈𝑛,

which will be referred to as the limit operator of 𝑇 with respect to U.
Let us mention elementary properties of limit operators.

Proposition 1 ([10, Proposition 3.4], [13, Proposition 1.2.2]) Let X be a Banach
space and U = (𝑈𝑛)𝑛∈N be a sequence of isometries on X.

(i) For all 𝑇 ∈ B(X), if (𝑇)U exists, then

∥(𝑇)U ∥B(X) ≤ ∥𝑇 ∥B(X) .

(ii) For all 𝑇, 𝑆 ∈ B(X) and 𝛼 ∈ C, if (𝑇)U and (𝑆)U exist, then

(𝑇 + 𝑆)U = (𝑇)U + (𝑆)U , (𝛼𝑇)U = 𝛼(𝑇)U , (𝑇𝑆)U = (𝑇)U (𝑆)U .

3.2 Limit operators of the operator of multiplication by the
characteristic function of the positive half-line

Let 𝑋 (R) be a rearrangement-invariant Banach function space. For 𝑓 ∈ 𝑋 (R) and
ℎ ∈ R, consider the translation operator 𝑇ℎ defined by

(𝑇ℎ 𝑓 ) (𝑥) := 𝑓 (𝑥 + ℎ), 𝑥 ∈ R. (4)

Since the functions 𝑓 and 𝑇ℎ 𝑓 are equimeasurable, the translation operator 𝑇ℎ is an
isometry on 𝑋 (R).
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Lemma 4 Let 𝑋 (R) be a separable rearrangement-invariant Banach function space.
Consider a sequence (ℎ𝑛)𝑛∈N in R and T := (𝑇ℎ𝑛 )𝑛∈N. If ℎ𝑛 → −∞ as 𝑛→ ∞, then
the limit operator of 𝜒R+ 𝐼 with respect to T is equal to 𝐼.

Proof. Let 𝑓 ∈ 𝐶∞
𝑐 (R). For all 𝑔 ∈ 𝑋 ′ (R) with ∥𝑔∥𝑋′ (R) ≤ 1, we have∫

R

��� [ (𝑇−1
ℎ𝑛
𝜒R+ 𝐼 𝑇ℎ𝑛 − 𝐼

)
𝑓

]
(𝑥)𝑔(𝑥)

��� 𝑑𝑥 = ∫
R

��𝑇−ℎ𝑛 𝜒R+ (𝑥) − 1
�� | 𝑓 (𝑥)𝑔(𝑥) | 𝑑𝑥

≤


𝑇−ℎ𝑛 𝜒R+ − 1




𝐿∞ (supp 𝑓 )

∫
R
| 𝑓 (𝑥)𝑔(𝑥) | 𝑑𝑥

≤


𝑇−ℎ𝑛 𝜒R+ − 1




𝐿∞ (supp 𝑓 ) ∥ 𝑓 ∥𝑋′′ (R) ,

from which we conclude that


(𝑇−1
ℎ𝑛
𝜒R+ 𝐼 𝑇ℎ𝑛 − 𝐼

)
𝑓





𝑋′′ (R)

≤


𝑇−ℎ𝑛 𝜒R+ − 1




𝐿∞ (supp 𝑓 ) ∥ 𝑓 ∥𝑋′′ (R) .

Employing the Lorentz-Luxemburg theorem (see [1, Chap. 1, Theorem 2.7]), it
follows that


(𝑇−1

ℎ𝑛
𝜒R+ 𝐼 𝑇ℎ𝑛 − 𝐼

)
𝑓





𝑋 (R)

≤


𝑇−ℎ𝑛 𝜒R+ − 1




𝐿∞ (supp 𝑓 ) ∥ 𝑓 ∥𝑋 (R) .

Observe that for all 𝑛 ∈ N,

𝑇−ℎ𝑛 𝜒R+ − 1



𝐿∞ (supp 𝑓 ) =



𝜒R+ − 1



𝐿∞ (supp 𝑓 −ℎ𝑛 ) .

The hypothesis that ℎ𝑛 → −∞ implies that there exists some 𝑁 ∈ N such that for all
𝑛 > 𝑁 ,

supp 𝑓 − ℎ𝑛 ⊆ R+,

and hence ∥𝜒R+ − 1∥𝐿∞ (supp 𝑓 −ℎ𝑛 ) = 0. Therefore, for all 𝑛 > 𝑁 ,


(𝑇−1
ℎ𝑛
𝜒R+ 𝐼 𝑇ℎ𝑛 − 𝐼

)
𝑓





𝑋 (R)

= 0.

This establishes that

lim
𝑛→∞




(𝑇−1
ℎ𝑛
𝜒R+ 𝐼 𝑇ℎ𝑛 − 𝐼

)
𝑓





𝑋 (R)

= 0,

for every 𝑓 ∈ 𝐶∞
𝑐 (R). On account of [7, Lemma 2.12(i)], the separability of 𝑋 (R)

implies that the set 𝐶∞
𝑐 (R) is dense in 𝑋 (R). Combining this with what we have just

proved, [14, Lemma 1.4.1] yields that

s-lim
𝑛→∞

(
𝑇−1
ℎ𝑛
𝜒R+ 𝐼 𝑇ℎ𝑛 − 𝐼

)
= 0,

i.e., (𝜒R+ 𝐼)T = 𝐼. ⊓⊔
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3.3 Limit operators of a compact operator

Let 𝑋 (R) be a rearrangement-invariant Banach function space. following [1, Chap. 2,
Definition 5.1], for each finite value of 𝑡 ≥ 0, let 𝐸 be a measurable subset of R of
measure 𝑡 and let

𝜑𝑋 (𝑡) := ∥𝜒𝐸 ∥𝑋 (R) , 𝑡 ≥ 0.

The function so defined is called the fundamental function of 𝑋 (R).
The following lemma is a one-dimensional version of [8, Lemma 7].

Lemma 5 Let 𝑋 (R) be a separable rearrangement-invariant Banach function space
such that 𝜑𝑋 (𝑡)/𝑡 → 0 as 𝑡 → ∞. Consider a sequence (ℎ𝑛)𝑛∈N in R and T :=
(𝑇ℎ𝑛 )𝑛∈N. If 𝐾 is a compact operator on 𝑋 (R) and ℎ𝑛 → ±∞ as 𝑛 → ∞, then the
limit operator of 𝐾 with respect to T is equal to the zero operator.

Let us specify the above result to the case of Lorentz and Orlicz spaces.

Corollary 1 Let 1 < 𝑝 < ∞, 1 ≤ 𝑞 < ∞ and let Φ be a Young’s function satisfying
the (𝛿2,Δ2)-condition and (1). Suppose 𝑋 (R) is the Lorentz space 𝐿 𝑝,𝑞 (R) or the
Orlicz space 𝐿Φ (R). Consider a sequence (ℎ𝑛)𝑛∈N in R and T := (𝑇ℎ𝑛 )𝑛∈N. If 𝐾 is
a compact operator on 𝑋 (R) and ℎ𝑛 → ±∞ as 𝑛→ ∞, then the limit operator of 𝐾
with respect to T is equal to the zero operator.

Proof. It is well-known that 𝜑𝐿𝑝,𝑞 (𝑡) = 𝑡1/𝑝 (see, e.g., [12, Proposition 8.4.1]).
Hence

lim
𝑡→∞

𝜑𝐿𝑝,𝑞 (𝑡)
𝑡

= lim
𝑡→∞

𝑡1/𝑝−1 = 0.

So, the hypotheses of Lemma 5 are satisfied for 𝑋 (R) = 𝐿 𝑝,𝑞 (R).
By [1, Chap. 4, Lemma 8.17], the fundamental function of 𝐿Φ (R) is given by

𝜑𝐿Φ (𝑡) = 1
Φ−1 (1/𝑡)

, 0 < 𝑡 < ∞.

It follows from the (𝛿2,Δ2)-condition that Φ(𝑢) ∈ (0,∞) for all 𝑢 ∈ (0,∞). Then
Φ is continuous and strictly increasing on [0,∞). Hence 𝑥 = Φ−1 (𝑠) if and only if
𝑠 = Φ(𝑥) for 𝑠 ∈ (0,∞) (see [1, Chap. 4, formulas (8.26)–(8.27)]). Therefore

lim
𝑡→∞

𝜑𝐿Φ (𝑡)
𝑡

= lim
𝑡→∞

1
𝑡Φ−1 (1/𝑡)

= lim
𝑠→0+

𝑠

Φ−1 (𝑠)
= lim
𝑥→0+

Φ(𝑥)
𝑥

= 0.

Thus, the hypotheses of Lemma 5 are satisfied for 𝑋 (R) = 𝐿Φ (R). It remains to
apply Lemma 5. ⊓⊔
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4 Proof of the main result

4.1 Equality of the operator and essential norms of the Fourier
convolution operator

In this section, we prove the main result (Theorem 1). The proof is divided into three
steps. The first step is to establish the equality of the operator and the essential norms
of the Fourier convolution operator 𝑊0 (𝑎). Since 𝑊0 (𝑎) is a translation-invariant
operator, the desired result follows from a more general result obtained recently by
the first author and Shargorodsky [9].

Theorem 3 Let 1 < 𝑝 < ∞, 1 ≤ 𝑞 < ∞ and let Φ be a Young’s function satisfying
the (𝛿2,Δ2)-condition. Suppose 𝑋 (R) is the Lorentz space 𝐿 𝑝,𝑞 (R) or the Orlicz
space 𝐿Φ (R). If 𝑎 ∈ M𝑋, then

𝑊0 (𝑎)




B(𝑋 (R) ) ,e =



𝑊0 (𝑎)



B(𝑋 (R) ) .

Proof. It follows from [1, Chap. 1, Corollary 5.6 and Theorem 3.11] that if 𝑋 (R) is
separable, then the set of all simple compactly supported functions is dense in 𝑋 (R).
Since the operator𝑊0 (𝑎) ∈ B(𝑋 (R)) is translation-invariant and the space 𝑋 (R) is
rearrangement-invariant, and hence, translation-invariant, the desired result follows
from [9, Theorem 5.1]. ⊓⊔

4.2 Equality of the operator norms of the Wiener-Hopf operator and
the Fourier convolution operator

The second step is to prove the equality of operator norms of the Fourier convolution
operator𝑊0 (𝑎) and the Wiener-Hopf operator𝑊 (𝑎) with the same symbol following
the idea by Duduchava [5].

Theorem 4 Let 1 < 𝑝 < ∞, 1 ≤ 𝑞 < ∞ and letΦ be a Young’s function satisfying the
(𝛿2,Δ2)-condition. Suppose Ω ∈ {R+,R} and 𝑋 (Ω) is the Lorentz space 𝐿 𝑝,𝑞 (Ω)
or the Orlicz space 𝐿Φ (Ω). For all 𝑎 ∈ M𝑋, the operator norms of the Fourier
convolution operator𝑊0 (𝑎) and the Wiener-Hopf operator𝑊 (𝑎) coincide:

∥𝑊 (𝑎)∥B(𝑋 (R+ ) ) =


𝑊0 (𝑎)




B(𝑋 (R) ) .

Proof. The proof follows the argument presented in [5, Proposition 2.2]. Fix 𝑎 ∈
M𝑋. By exploiting the submultiplicative property of the operator norm, we find that

∥𝑊 (𝑎)∥B(𝑋 (R+ ) ) ≤ ∥𝑟+∥B(𝑋 (R) ,𝑋 (R+ ) )


𝑊0 (𝑎)




B(𝑋 (R) ) ∥ℓ+∥B(𝑋 (R+ ) ,𝑋 (R) )

≤


𝑊0 (𝑎)




B(𝑋 (R) ) . (5)
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The proof of the reverse inequality is more involved. First of all, observe that
the product of the operator of extension by zero ℓ+ and the restriction operator 𝑟+ is
nothing but the operator of multiplication by the characteristic function of R+:

ℓ+𝑟+ = 𝑀 (𝜒R+ ).

Fix 𝜀 > 0. Since the underlying rearrangement-invariant Banach function space
𝑋 (R) is separable, [7, Lemma 2.12(a)] yields that the subspace 𝐶∞

𝑐 (R) is dense in
𝑋 (R). As a consequence of this, we have

𝑊0 (𝑎)




B(𝑋 (R) ) = sup

𝑓 ∈𝐶∞
𝑐 (R)

∥ 𝑓 ∥𝑋(R)=1



𝑊0 (𝑎) 𝑓



𝑋 (R) .

Given this characterization, the notion of supremum assures the existence of some
𝑓 ∈ 𝐶∞

𝑐 (R) with ∥ 𝑓 ∥𝑋 (R) = 1 such that

𝑊0 (𝑎) 𝑓



𝑋 (R) >



𝑊0 (𝑎)



B(𝑋 (R) ) −

𝜀

2
.

The fact that 𝑓 has compact support implies that there exists some 𝑅 > 0 such that
supp 𝑓 ⊂ [−𝑅, 𝑅]. With this in mind, consider the family of functions defined by

𝑓ℎ := 𝑟+𝑇ℎ 𝑓

for each ℎ < 0, where the translation operator 𝑇ℎ is defined by (4). It is clear that if
ℎ < −𝑅, we have supp𝑇ℎ 𝑓 ⊂ R+,

∥ 𝑓ℎ∥𝑋 (R+ ) = ∥ 𝑓 ∥𝑋 (R) = 1,

and

∥𝑊 (𝑎) 𝑓ℎ∥𝑋 (R+ ) = ∥ℓ+𝑊 (𝑎) 𝑓ℎ∥𝑋 (R) =


ℓ+𝑟+𝑊0 (𝑎)ℓ+𝑟+𝑇ℎ 𝑓




𝑋 (R)

=


𝑀 (𝜒R+ )𝑊0 (𝑎)𝑀 (𝜒R+ )𝑇ℎ 𝑓




𝑋 (R) =



𝑀 (𝜒R+ )𝑊0 (𝑎)𝑇ℎ 𝑓



𝑋 (R)

=


𝑀 (𝜒R+ )𝑇ℎ𝑊0 (𝑎) 𝑓




𝑋 (R) =



𝑀 (𝜒R++ℎ)𝑊0 (𝑎) 𝑓



𝑋 (R)

=


𝑀 (𝜒(ℎ,∞) )𝑊0 (𝑎) 𝑓




𝑋 (R) =



𝜒(ℎ,∞) ·𝑊0 (𝑎) 𝑓



𝑋 (R) .

Since 𝑋 (R) is separable, it follows from [1, Chap. 1, Corollary 5.6] and [1, Chap. 1,
Proposition 3.6] that the Lebesgue dominated convergence theorem is true in 𝑋 (R).
Therefore

lim
ℎ→−∞



𝜒(ℎ,∞) ·𝑊0 (𝑎) 𝑓 −𝑊0 (𝑎) 𝑓



𝑋 (R) = 0,

and hence
lim
ℎ→−∞



𝜒(ℎ,∞) ·𝑊0 (𝑎) 𝑓



𝑋 (R) =



𝑊0 (𝑎) 𝑓



𝑋 (R) .

As a consequence of this, for sufficiently large −ℎ, we have
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𝜒(ℎ,∞) ·𝑊0 (𝑎) 𝑓



𝑋 (R) >



𝑊0 (𝑎) 𝑓



𝑋 (R) −

𝜀

2
.

Putting everything together, we get

∥𝑊 (𝑎)∥B(𝑋 (R+ ) ) ≥ ∥𝑊 (𝑎) 𝑓ℎ∥𝑋 (R+ ) = ∥𝜒(ℎ,∞) ·𝑊0 (𝑎) 𝑓 ∥𝑋 (R)
>


𝑊0 (𝑎) 𝑓




𝑋 (R) −

𝜀

2
>


𝑊0 (𝑎)




B(𝑋 (R) ) − 𝜀.

Finally, since 𝜀 > 0 was considered arbitrary, we arrive at the conclusion that

∥𝑊 (𝑎)∥B(𝑋 (R+ ) ) ≥


𝑊0 (𝑎)




B(𝑋 (R) ) ,

which, combined with (5), proves the result. ⊓⊔

4.3 Equality of the essential norms of the Fourier convolution operator
and the Wiener-Hopf operator

The final step of the proof Theorem 1 consists in establishing the equality of the
essential norms of the Fourier convolution operator 𝑊0 (𝑎) and the Wiener-Hopf
operator𝑊 (𝑎) with the same symbol.

Theorem 5 Let Ω ∈ {R+,R}, 1 < 𝑝 < ∞, 1 ≤ 𝑞 < ∞, and Φ be a Young’s
function satisfying the (𝛿2,Δ2)-condition and (1). Suppose 𝑋 (Ω) is the Lorentz
space 𝐿 𝑝,𝑞 (Ω) or the Orlicz space 𝐿Φ (Ω). For all 𝑎 ∈ M𝑋, the essential norms
of the Fourier convolution operator 𝑊0 (𝑎) and the Wiener-Hopf operator 𝑊 (𝑎)
coincide:

∥𝑊 (𝑎)∥B(𝑋 (R+ ) ) ,e =


𝑊0 (𝑎)




B(𝑋 (R) ) ,e . (6)

Proof. Fix 𝑎 ∈ M𝑋. By Theorems 3 and 4, it follows that

∥𝑊 (𝑎)∥B(𝑋 (R+ ) ) ,e = inf
𝐾∈K (𝑋 (R+ ) )

∥𝑊 (𝑎) + 𝐾 ∥B(𝑋 (R+ ) ) ≤ ∥𝑊 (𝑎)∥B(𝑋 (R+ ) )

=


𝑊0 (𝑎)




B(𝑋 (R) ) =



𝑊0 (𝑎)



B(𝑋 (R) ) ,e . (7)

The proof of the reverse inequality is based on the argument presented in [2, Propo-
sition 4.1]. Let us start by noting that for all 𝐾 ∈ K(𝑋 (R+)),

∥𝑊 (𝑎) + 𝐾 ∥B(𝑋 (R+ ) ) = sup
𝑓 ∈𝑋 (R+ )

∥ 𝑓 ∥𝑋(R+) ≤1

∥(𝑊 (𝑎) + 𝐾) 𝑓 ∥𝑋 (R+ )

= sup
𝑓 ∈𝑋 (R+ )

∥ 𝑓 ∥𝑋(R+) ≤1

∥ℓ+ (𝑊 (𝑎) + 𝐾) 𝑓 ∥𝑋 (R)

= sup
𝑓 ∈𝑋 (R)

∥𝑟+ 𝑓 ∥𝑋(R+) ≤1

∥ℓ+ (𝑊 (𝑎) + 𝐾)𝑟+ 𝑓 ∥𝑋 (R)
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≥ sup
𝑓 ∈𝑋 (R)

∥ 𝑓 ∥𝑋(R) ≤1

∥ℓ+ (𝑊 (𝑎) + 𝐾)𝑟+ 𝑓 ∥𝑋 (R)

= ∥ℓ+ (𝑊 (𝑎) + 𝐾)𝑟+∥B(𝑋 (R) ) ,

because ∥𝑟+∥B(𝑋 (R) ,𝑋 (R+ ) ) ≤ 1. Taking into account that ℓ+𝑟+ = 𝑀 (𝜒R+ ), the above
inequality becomes

∥𝑊 (𝑎) + 𝐾 ∥B(𝑋 (R+ ) ) ≥


𝑀 (𝜒R+ )𝑊0 (𝑎)𝑀 (𝜒R+ ) + ℓ+𝐾𝑟+




B(𝑋 (R) ) . (8)

It is clear that since 𝐾 ∈ K(𝑋 (R+)), we have ℓ+𝐾𝑟+ ∈ K(𝑋 (R)). With this in mind,
consider the sequence of translation operators T := (𝑇ℎ𝑛 )𝑛∈N defined by

(𝑇ℎ𝑛 𝑓 ) (𝑥) := 𝑓 (𝑥 + ℎ𝑛), 𝑛 ∈ N,

where (ℎ𝑛)𝑛∈N is any sequence of real numbers satisfying ℎ𝑛 → −∞ as 𝑛 → ∞.
Lemma 4 yields that

s-lim
𝑛→∞

𝑇−ℎ𝑛𝑀 (𝜒R+ )𝑇ℎ𝑛 = 𝐼 .

By Corollary 1, we have

s-lim
𝑛→∞

𝑇−ℎ𝑛ℓ+𝐾𝑟+𝑇ℎ𝑛 = 0.

On account of the above remarks, Proposition 1(ii), and the fact𝑊0 (𝑎) is translation-
invariant, we conclude that

s-lim
𝑛→∞

𝑇−ℎ𝑛

(
𝑀 (𝜒R+ )𝑊0 (𝑎)𝑀 (𝜒R+ ) + ℓ+𝐾𝑟+

)
𝑇ℎ𝑛

= s-lim
𝑛→∞

[ (
𝑇−ℎ𝑛𝑀 (𝜒R+ )𝑇ℎ𝑛

)
𝑊0 (𝑎)

(
𝑇−ℎ𝑛𝑀 (𝜒R+ )𝑇ℎ𝑛

)
+ 𝑇−ℎ𝑛ℓ+𝐾𝑟+𝑇ℎ𝑛

]
= 𝑊0 (𝑎).

Consequently, Proposition 1(i) yields that

𝑀 (𝜒R+ )𝑊0 (𝑎)𝑀 (𝜒R+ ) + ℓ+𝐾𝑟+



B(𝑋 (R) )

≥



(𝑀 (𝜒R+ )𝑊0 (𝑎)𝑀 (𝜒R+ ) + ℓ+𝐾𝑟+

)
T





B(𝑋 (R) )

=


𝑊0 (𝑎)




B(𝑋 (R) ) . (9)

Combining (8) and (9), we arrive at

∥𝑊 (𝑎) + 𝐾 ∥B(𝑋 (R+ ) ) ≥


𝑊0 (𝑎)




B(𝑋 (R) ) .

for any 𝐾 ∈ K(𝑋 (R+)), and thus

∥𝑊 (𝑎)∥B(𝑋 (R+ ) ) ,e ≥


𝑊0 (𝑎)




B(𝑋 (R) ) =



𝑊0 (𝑎)



B(𝑋 (R) ) ,e (10)
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(see Theorem 3). Finally, inequalities (7) and (10) imply equality (6). ⊓⊔

Theorem 1 follows immediately from Theorems 3–5.
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