Fourier convolution operators with symbols equivalent to zero at infinity on Banach function spaces." *Proceedings of ISAAC 2019*. In Press.

"Hardy-Littlewood maximal operator on reflexive variable Lebesgue spaces over spaces of homogeneous type." *Studia Mathematica* (In Press).

"Semi-almost periodic Fourier multipliers on rearrangement-invariant spaces with suitable Muckenhoupt weights." *Boletín de la Sociedad Matemática Mexicana* (In Press).

"Algebra of convolution type operators with continuous data on Banach function spaces." *Banach Center Publications*. 119 (2019): 157-171.Website

"The Brown-Halmos theorem for a pair of abstract Hardy spaces." *Journal of Mathematical Analysis and Applications*. 472 (2019): 246-265.Website

"Hardy-Littlewood maximal operator on the associate space of a Banach function space." *Real Analysis Exchange*. 44.1 (2019): 119-140.Website

"Noncompactness of Fourier convolution operators on Banach function spaces." *Annals of Functional Analysis*. 10.4 (2019): 553-561.

"When does the norm of a Fourier multiplier dominate its L-infinfty norm?" *Proceedings of the London Mathematical Society*. 118 (2019): 901-941.Website

"The Coburn-Simonenko theorem for Toeplitz operators acting between Hardy type subspaces of different Banach function spaces." *Mediterranean Journal of Mathematics*. 15 (2018): 91.Website

"Criteria for n(d)-normality of weighted singular integral operators with shifts and slowly oscillating data." *Proceedings of the London Mathematical Society*. 116.4 (2018): 997-1027 .Website

"More on the density of analytic polynomials in abstract Hardy spaces." *The Diversity and Beauty of Applied Operator Theory. Operator Theory: Advances and Applications, vol. 268*. Eds. Albrecht Böttcher, Daniel Potts, Peter Stollman, and David Wenzel. Basel: Birkhäuser, 2018. 319-329.

"Semi-Fredholmness of weighted singular integral operators with shifts and slowly oscillating data." *Operator Theory, Operator Algebras, and Matrix Theory. Operator Theory: Advances and Applications, vol. 267. * Eds. Carlos André, Maria Amélia Bastos, Alexei Yu. Karlovich, Bernd Silbermann, and Ion Zaballa. Basel: Birkhäuser, 2018. 221-246.

"Density of analytic polynomials in abstract Hardy spaces." *Commentationes Mathematicae*. 57.2 (2017): 131-141.Website

"The index of weighted singular integral operators with shifts and slowly oscillating data." *Journal of Mathematical Analysis and Applications*. 450 (2017): 606-630.Website

"Necessary Fredholm conditions for weighted singular integral operators with shifts and slowly oscillating data." *Journal of Integral Equations and Applications*. 29.3 (2017): 365-399.

"Toeplitz operators on abstract Hardy spaces built upon Banach function spaces." *Journal of Function Spaces*. 2017 (2017): Article ID 9768210, 8 pages.Website

"The generalized Cauchy index of some semi-almost periodic functions." *Boletín de la Sociedad Matemática Mexicana*. 22.2 (2016): 473-485. AbstractWebsite

"On a weighted singular integral operator with shifts and slowly oscillating data." *Complex Analysis and Operator Theory*. 10.6 (2016): 1101-1131. AbstractWebsite

"One-sided invertibility criteria for binomial functional operators with shift and slowly oscillating data." *Mediterranean Journal of Mathematics*. 13.6 (2016): 4413-4435.Website

"Banach algebra of the Fourier multipliers on weighted Banach function spaces." *Concrete Operators*. 2.1 (2015): 27-36. AbstractWebsite

"Commutators of convolution type operators on some Banach function spaces." *Annals of Functional Analysis*. 6.4 (2015): 191-205. AbstractWebsite

"Fredholmness and index of simplest weighted singular integral operators with two slowly oscillating shifts." *Banach Journal of Mathematical Analysis*. 9.3 (2015): 24-42. AbstractWebsite

"Maximally modulated singular integral operators and their applications to pseudodifferential operators on Banach function spaces." *Function Spaces in Analysis. Contemporary Mathematics, 645*. Ed. Krzysztof Jarosz. Providence, Rhode Island: American Mathematical Society, 2015. 165-178. Abstract

"