- Citation:
- Karlovich, Alexei Yu. "Singular integral operators with flip and unbounded coefficients on rearrangement-invariant spaces." Functional Analysis and its Applications. Proceedings of the international conference, dedicated to the 110th anniversary of Stefan Banach, Lviv National University, Lviv, Ukraine, May 28--31, 2002. Eds. V. Kadets, and W. Zelazko. Amsterdam: Elsevier, 2004. 123-131.

### Abstract:

We prove Fredholm criteria for singular integral operators of the form

\[

P_++M_bP_-+M_uUP_-,

\]

where \(P_\pm\) are the Riesz projections, \(U\) is the flip operator, and \(M_b,M_u\) are operators of multiplication by functions \(b,u\), respectively, on a reflexive rearrangement-invariant space with nontrivial Boyd indices over the unit circle. We assume a priori that \(M_b\) is bounded, but \(M_u\) may be unbounded. The function \(u\) belongs to a class of, in general, unbounded functions that relates to the Douglas algebra \(H^\infty+C\).

Related External Link