Publications in the Year: 2016

Journal Article

Klein, H, Milàn J, Clemmensen LB, Frobøse N, Mateus O, Klein N, Adolfssen JS, Estrup EJ, Wings O.  2016.  Archosaur footprints (cf. Brachychirotherium) with unusual morphology from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland. Geological Society, London, Special Publications. 434(1):71-85. Abstractklein_et_al_2015_archosaur_footprints_cf._brachychirotherium_with_unusual.pdfWebsite

The Ørsted Dal Member of the Upper Triassic Fleming Fjord Formation in East Greenland is well known for its rich vertebrate fauna, represented by numerous specimens of both body and ichnofossils. In particular, the footprints of theropod dinosaurs have been described. Recently, an international expedition discovered several slabs with 100 small chirotheriid pes and manus imprints (pes length 4–4.5 cm) in siliciclastic deposits of this unit. They show strong similarities with Brachychirotherium, a characteristic Upper Triassic ichnogenus with a global distribution. A peculiar feature in the Fleming Fjord specimens is the lack of a fifth digit, even in more deeply impressed imprints. Therefore, the specimens are assigned here tentatively to cf. Brachychirotherium. Possibly, this characteristic is related to the extremely small size and early ontogenetic stage of the trackmaker. The record from Greenland is the first evidence of this morphotype from the Fleming Fjord Formation. Candidate trackmakers are crocodylian stem group archosaurs; however, a distinct correlation with known osteological taxa from this unit is not currently possible. While the occurrence of sauropodomorph plateosaurs in the bone record links the Greenland assemblage more closer to that from the Germanic Basin of central Europe, here the described footprints suggest a Pangaea-wide exchange.Supplementary material: Three-dimensional model of cf. Brachychirotherium pes–manus set (from MGUH 31233b) from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland as pdf, ply and jpg files (3D model created by Oliver Wings; photographs taken by Jesper Milàn) is available at https://doi.org/10.6084/m9.figshare.c.2133546

Tschopp, E, Mateus O.  2016.  Case 3700 Diplodocus Marsh, 1878 (Dinosauria, Sauropoda): Proposed designation of D. carnegii Hatcher, 1901 as the type species. Bulletin of Zoological Nomenclature. 73:17–24., Number 1: International Commission on Zoological Nomenclature Abstract

The purpose of this application, under Articles 78.1 and 81.1 of the Code, is to replace Diplodocus longus Marsh, 1878 as the type species of the sauropod dinosaur genus Diplodocus by the much better represented D. carnegii Hatcher, 1901, due to the undiagnosable state of the holotype of D. longus (YPM 1920, a partial tail and a chevron). The holotype of D. carnegii, CM 84, is a well-preserved and mostly articulated specimen. Casts of it are on display in various museums around the world, and the species has generally been used as the main reference for studies of comparative anatomy or phylogeny of the genus. Both species are known from the Upper Jurassic Morrison Formation of the western United States. The genus Diplodocus is the basis for the family-level taxa diplodocinae Marsh, 1884, diplodocidae Marsh, 1884, diplodocimorpha Marsh, 1884 (Calvo & Salgado, 1995) and diplodocoidea Marsh, 1884 (Upchurch, 1995). It is also a specifier of at least 10 phylogenetic clades. With the replacement of D. longus by D. carnegii as type species, Diplodocus could be preserved as a taxonomic name with generally accepted content. Taxonomic stability of the entire clade diplodocoidea, and the proposed definitions of several clades within Sauropoda, could be maintained.

Leal, AS, Dionísio A, Sequeira Braga MA, Mateus O.  2016.  The long term preservation of late jurassic sandstone dinossaur footprints in a museum environment. International Journal of Conservation Science. 7:627-646., Number 3 Abstract
n/a
Hendrickx, C, Mateus O, Buffetaut E.  2016.  Morphofunctional Analysis of the Quadrate of Spinosauridae (Dinosauria: Theropoda) and the Presence of Spinosaurus and a Second Spinosaurine Taxon in the Cenomanian of North Africa., 01. PLoS ONE. 11:e0144695., Number 1: Public Library of Science AbstractWebsite

Six quadrate bones, of which two almost certainly come from the Kem Kem beds (Cenomanian, Upper Cretaceous) of south-eastern Morocco, are determined to be from juvenile and adult individuals of Spinosaurinae based on phylogenetic, geometric morphometric, and phylogenetic morphometric analyses. Their morphology indicates two morphotypes evidencing the presence of two spinosaurine taxa ascribed to Spinosaurus aegyptiacus and? Sigilmassasaurus brevicollis in the Cenomanian of North Africa, casting doubt on the accuracy of some recent skeletal reconstructions which may be based on elements from several distinct species. Morphofunctional analysis of the mandibular articulation of the quadrate has shown that the jaw mechanics was peculiar in Spinosauridae. In mature spinosaurids, the posterior parts of the two mandibular rami displaced laterally when the jaw was depressed due to a lateromedially oriented intercondylar sulcus of the quadrate. Such lateral movement of the mandibular ramus was possible due to a movable mandibular symphysis in spinosaurids, allowing the pharynx to be widened. Similar jaw mechanics also occur in some pterosaurs and living pelecanids which are both adapted to capture and swallow large prey items. Spinosauridae, which were engaged, at least partially, in a piscivorous lifestyle, were able to consume large fish and may have occasionally fed on other prey such as pterosaurs and juvenile dinosaurs.

Leal, AA, Dion\{\'ı\}sio A, Braga MAS, Mateus O.  2016.  The long term preservation of Late Jurassic sandstone dinosaur footprints in a museum environment. International Journal of Conservation Science. 7:627-646. Abstract
n/a
Leal, AA, Dionísio A, Braga MAS, Mateus O.  2016.  The long term preservation of Late Jurassic sandstone dinosaur footprints in a museum environment. International Journal of Conservation Science. 7(3):627-646. AbstractWebsite

This study focuses on the assessment of the degradation processes occurring in three sandstone infills of fossilized Late Jurassic ornithopod tridactyl footprints, found in 2001 in a coastline cliff in Porto das Barcas (Lourinhã, Portugal) and exhibited in a museum display since 2004. These dinosaur footprints present nowadays severe decay phenomena compromising their physical integrity and are leading gradually to their loss of value. The deterioration patterns were recorded, a map of their distribution was prepared and several samples were collected both in the dinosaur footprints and in the coastline cliff. Different analytical procedures were applied such as XRD, FTIR, FESEM and Ion Chromatography. A microclimatic survey was also performed and air temperature and relative humidity was measured during eight months both indoor and also outdoor. The decay patterns observed are a combination intrinsic and extrinsic factors the stone material, namely swelling of clay minerals in the rock matrix (smectite and chlorite-smectite mixed-layer), presence of salts (mainly chlorides), application of past conservation treatments (poly(vinyl) acetate and epoxy resins) and with the museum's indoor thermohygrometric conditions (mainly non-stable hygrometric conditions). This scientific knowledge is therefore essential to the sustainable preservation of this paleontological heritage.

Thesis