Publications

Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Nondestructive testing methodology to assess the conservation of historic stone buildings and monuments, Chastre, Carlos, and Ludovico-Marques Marco , Handbook of Materials Failure Analysis: With Case Studies from the Construction Industries, p.255-294, (2018) Abstract

Earthquakes, soil settlements, traffic vibrations, and air pollution are some of the actions that can affect historic old buildings. Besides these, the lack of continuous maintenance puts a large part of this heritage in risk due to structural problems that reduce their own safety and that of their users. The preservation and risk mitigation of built cultural heritage require the use of reliable tools in order to assess its state of conservation and to identify and prevent potential vulnerabilities. Having this in mind, it is not possible to carry out destructive tests in most historic old buildings, so it is preferable to opt for nondestructive tests (NDT) or alternative methodologies that allow the physical and mechanical characterization of materials and structure. In this chapter, a general view of NDT methods used in historic buildings to obtain the geometrical information, the damage mapping, the mechanical and physical characterization, and the petrographic analysis of stones is presented. An alternative methodology to physically and mechanically characterize the stone of historic buildings using NDT tests is also proposed. The chapter ends with a case study carried out in the St. Leonard’s Church, a Portuguese monument built in Atouguia da Baleia village in the 13th century, where the alternative methodology here presented was applied. The final results of this study show that the methodology proposed allows the obtention of stress-strain curves in a completely nondestructive way, based on the water absorption coefficient at low pressure.

2016
Novo sistema de reforço à flexão de vigas de betão armado com armaduras de aço inoxidável aplicadas pelo exterior, Franco, Noel, Chastre Carlos, and Biscaia Hugo , II Encontro Luso-Brasileiro de Degradação de Estruturas de Betão, 27-29 September, LNEC, Lisbon, Portugal, p.12p., (2016) Abstractdegrada_2016_-_noel_franco_-_ext-abstract.pdf

O reforço à flexão de vigas de betão armado tem apresentado uma evolução com tendência para soluções onde são utilizadas armaduras à base de materiais compósitos de fibras de Carbono, Vidro, Basalto ou Aramida, aplicadas com as técnicas Externally Bonded Reinforcement (EBR) ou Near Surface Mounted (NSM). No entanto, o comportamento elástico-linear destes materiais e as roturas tendencialmente frágeis das soluções condicionam a sua utilização em estruturas onde se pretende alguma ductilidade. Por conseguinte, procurou-se desenvolver um sistema de reforço estrutural alternativo e inovador em que os materiais de reforço aplicados, conjuntamente com a solução de reforço, conseguissem minimizar ou eliminar os riscos de roturas prematuras e ao mesmo tempo aumentassem a ductilidade dos elementos reforçados. Neste trabalho, apresenta-se em pormenor este novo sistema de reforço à flexão de vigas de betão armado com armaduras de aço inoxidável ancoradas internamente por aderência. Neste sistema de reforço as armaduras são contínuas e pós-instaladas pelo exterior, ficando as extremidades ancoradas por aderência no interior do elemento estrutural. Apresentam-se e discutem-se os resultados dos ensaios realizados para avaliar o desempenho das vigas de betão armado reforçadas com esta nova técnica. Os modos de rotura observados são também motivo de análise mais detalhada. Evidenciam-se alguns benefícios na utilização deste sistema de reforço inovador, nomeadamente ao nível da capacidade resistente última das vigas de betão armado e fazem-se algumas recomendações para a sua aplicação e utilização na reabilitação de elementos estruturais degradados.

Novo sistema de reforço estrutural de vigas de betão armado com compósitos de FRP ancorados internamente por aderência, Chastre, Carlos, Monteiro António, Biscaia Hugo, and Franco Noel , II Encontro Luso-Brasileiro de Degradação de Estruturas de Betão, 27-29 September, LNEC, Lisbon, Portugal, p.12p., (2016) Abstractdegrada_2016_-_carlos_chastre_-_ext-abstract.pdf

A reabilitação de estruturas de betão armado com compósitos de FRP tem tido uma grande aceitação em especial devido às excelentes características de durabilidade dos materiais compósitos, ao seu baixo peso e às suas elevadas prestações mecânicas. Contudo, o comportamento elástico-linear dos compósitos de FRP e a sua forma de aplicação pode originar roturas prematuras, quer na técnica de reforço EBR (Externally Bonded Reinforcement), em que o compósito é colado externamente, quer na técnica NSM (Near Surface Mounted) em que o compósito é inserido na zona do recobrimento. No sentido de minimizar o risco de roturas prematuras e ao mesmo tempo aumentar a ductilidade dos elementos reforçados, desenvolveu-se um novo sistema de reforço estrutural em que as armaduras são ancoradas internamente por aderência. A fim de validar o novo sistema de reforço estrutural com compósitos de FRP foi realizado um programa experimental que incluiu o ensaio de vigas de betão armado (BA) reforçadas com as seguintes técnicas de reforço: EBR, NSM e pela nova técnica CREatE (continuous reinforcement embedded at ends). Neste artigo descrevem-se os ensaios experimentais realizados e analisam-se os resultados obtidos. As vigas de BA ensaiadas tinham seção em T, com um vão de 3,0 m e uma altura de 0,3 m e foram solicitadas em flexão em 4 pontos e testadas até a rotura. A técnica CREatE provou ser a mais eficaz das três alternativas testadas mobilizando a totalidade do CFRP e apresentando a maior capacidade resistente e a ductilidade mais elevada.

A Nonlinear Analytical model to predict The full-range debonding process of FRP-to-parent material interfaces free of any mechanical anchorage devices, Biscaia, Hugo C., Borba Isabel S., Silva Cinderela, and Chastre Carlos , Composite Structures, 15 March 2016, Volume 138, p.52-63, (2016) AbstractWebsite

Ever since Fibre Reinforced Polymers (FRP) began to be used in the repair or strengthening of structural elements, the premature debonding of the FRP composite from the substrate has been an important drawback that have been motive of several studies. The importance of knowing and describing the full-range behaviour of FRP-to-parent material interfaces rigorously is therefore urgent. However, at present, there are no analytical solutions that describe the full-range behaviour of such interfaces that help us to understand the full debonding phenomena of FRP-to-parent material interfaces free of any mechanical anchorage devices. Therefore, the aim of this study is to contribute the advances of that knowledge through an analytical solution by means of an exponential bond-slip model that is known to represent the nonlinearities involved in the debonding process of the FRP composite from the substrate. Analytical solutions for the slips, strains in the FRP composite, bond stress distributions along the bonded interface and stresses in the substrate are presented. A full-range load-slip analysis is also discussed.

A New Bonding Technique for the Rehabilitation of Old Timber Floors with CFRP Composites, Biscaia, Hugo, Chastre Carlos, Cruz David, and Franco Noel , 41th IAHS Word Congress of Housing. Sustainability and Innovation for the Future, 13-16 September , Albufeira, Portugal, p.10, (2016) Abstract41_iahs_2016_-_hugo_biscaia_-_ext-abstract.pdf

Despite the number of applications with Carbon Fiber Reinforced Polymers (CFRP) have been grown in civil constructions, the studies available in the literature dedicated to the strengthening of old timber beams are very rare. This paper analyses the bending behaviour of old suspended timber floors flexurally-strengthened with CFRP laminates. A new bonding technique developed by the authors is presented which mainly consists on the embedding of both CFRP ends into the core of the timber beams. Differences between the traditional strengthening, i.e. Externally Bonded Reinforcement (EBR), and the new bonding technique are reported. A timber pavement without any CFRP laminate bonded to its soffit was also considered and the results were used as reference values for comparison with the strengthened specimens. The results revealed that the CFRP laminate used for the flexurally-strengthened of the specimen according to the EBR technique reached only 27.2% of the rupture strain of the CFRP laminate whereas the new bonding technique was capable to prevent the premature debonding of the CFRP from the timber substrate and the rupture of the CFRP laminate was observed. Furthermore, the strain distributions in the CFRP laminates and the bond stresses within the CFRP-to-timber interfaces were affected when the new technique was used. For the sake of better understanding the rupture modes observed, a numerical approach was developed which allowed us to conclude that, until the collapse of the beams, the timber never reached its yielding point and the collapse were mainly due to the poor quality of the timber (e.g. quantity of knot, cracks and irregular geometries) and the low shear capacity of the beams.

2015
A new discrete method to model unidirectional FRP-to-parent material bonded joints subjected to mechanical loads, Biscaia, Hugo C., Chastre Carlos, and Viegas André , Composite Structures, 3//, Volume 121, p.280-295, (2015) AbstractWebsite

Nowadays fiber reinforced polymer (FRP) composites play an important role in the strengthening of structures. Different methods can be used to apply these materials: the externally bonded reinforcement (EBR), and the near surface mounted (NSM) using strips and NSM rods. There are only a few studies comparing these methods or presenting an efficient model to simulate these strengthening techniques. This study looks mainly at the analysis of the interface between FRP-to-parent material bonded joints. The paper examines, through a new discrete model based on axial and shear springs, the performance of FRP-to-parent material bonded joints for EBR or NSM techniques using strips or composite rods. In order to implement the model a routine in MATLAB was developed and several bond–slip curves were assumed. The results revealed that load–slip curves or bond stresses, strains or slippages along the bonded length obtained from several bond–slip curves are similar to the analytical and other numerical solutions found in literature. In what concerns the adhesion between two different materials, and assuming the same bond characteristics for the three fiber strengthening techniques, the NSM system using FRP strips had the highest maximum load transmitted to the FRP strip combined with the lowest effective bond length. The results obtained from the proposed model were also very accurate with that obtained from an analytical solution found in literature that simulates the debonding phenomenon of FRP-to-concrete interfaces between to adjacent cracks.

Numerical modelling of the effects of elevated service temperatures on the debonding process of frp-to-concrete bonded joints, Biscaia, Hugo C., Chastre Carlos, Viegas André, and Franco Noel , Composites Part B: Engineering, Volume 70, p.64-79, (2015) AbstractWebsite

There are many issues concerning the performance behaviour of FRP-to-concrete interfaces at elevated service temperatures (EST). At EST, i.e. slightly above the glass transition temperature (Tg), some properties associated with the FRP composites, such as the stiffness, strength or the bond characteristics, degrade. This is a crucial issue and there are only a few studies that take into account such effects on FRP-to-concrete interfaces at EST. This paper examines, through a numerical analysis, the performance of FRP-to-concrete bonded joints at EST using a new discrete model based on truss elements and shear springs. The External Bonded Reinforcement (EBR) systems subjected to EST are analyzed. The numerical discrete model was implemented in a MATLAB routine and the bond-slip curves of the interfaces at EST were obtained from a model found in literature. The numerical results revealed that the interface at EST behaves similarly to one with two equal mechanical loads applied at both ends of the FRP plate. The load-slip curves or bond stresses, strains or slippages along the bonded length obtained from several bond-slip curves at different temperatures were obtained. Two different single-lap shear tests were simulated at steady-state (steady temperature followed by load increase) and transient state (steady load followed by temperature increase). Regarding the influence of the temperature on the adhesion between the FRP and concrete, the results showed that an increase in the temperature at an earlier situation, i.e. during a period where temperature had no influence in the concrete deformations, leads to an increase in the effective bond length of the interface affecting the initial strength of the interface.

2014
Numerical analysis of FRP anchorage zones with variable width, Biscaia, Hugo C., Micaelo Rui, Teixeira João, and Chastre Carlos , Composites Part B: Engineering, 11//, Volume 67, p.410-426, (2014) AbstractWebsite

The use of Fibre Reinforced Polymers (FRP) has recently become widespread in the construction industry. However, some drawbacks related to premature debonding of the FRP composites from the bonded substrates have been identified. One of the solutions proposed is the implementation of mechanical anchorage systems. Although some design guidelines have been developed, the actual knowledge continues to be rather limited. Thus, designers and researchers have not yet achieved any consensus on the efficiency of any particular anchor device in delaying or preventing the premature debonding failure mode that can occur in Externally Bonded Reinforcement (EBR) systems. This paper studies the debonding phenomenon of FRP anchoring systems with a linear variable width, with a numerical analysis based on the Distinct Element Method (DEM). Combined systems with constant and variable width are also discussed. The FRP-to-parent material interfaces are modelled with a rigid-linear softening bond–slip law. The numerical results showed that it is possible to attain the FRP rupture force with a variable width solution. This solution is particularly attractive when the bonded length is shorter than the effective bonded length because the strength of the interface can be highly incremented.

2013
Non-linear analytical model of composites based on basalt textile reinforced mortar under uniaxial tension, Larrinaga, Pello, Chastre Carlos, San-José José T., and Garmendia Leire , Composites Part B: Engineering, 12//, Volume 55, p.518-527, (2013) AbstractWebsite

The recent development of inorganic based composites as low-cost materials in reinforced concrete structural strengthening and precast thin-walled components, requires the creation of models that predict the mechanical behaviour of these materials. Textile Reinforced Mortar (TRM) shows complex stress–strain behaviour in tension derived from the heterogeneity of its constituent materials. This complexity is mainly caused by the formation of several cracks in the inorganic matrix. The multiple cracking leads to a decrease in structural stiffness. Due to the severe conditions of the serviceability limit state in structural elements, the prediction of the stress–strain curve is essential for design and calculation purposes. After checking other models, an empirical nonlinear approach, which is based on the crack control expression included in the Eurocode 2, is proposed in this paper. Following this scope, this paper presents an experimental campaign focused on 31 TRM specimens reinforced with four different reinforcing ratios. The results are analysed and satisfactorily contrasted with the presented non-linear approach.

Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces, Biscaia, Hugo C., Chastre Carlos, and Silva Manuel A. G. , Composites Part B: Engineering, Volume 50, p.210-223, (2013) AbstractWebsite

The paper analyses numerical solutions for the process leading to debonding failure of fiber reinforced polymers (FRP)-to-concrete interfaces in shear tests with the FRP plate subjected to a tensile load at one end. Any realistic local nonlinear bond-slip law can be used in the numerical analysis proposed in the present study. However, only a Popovics’ type expression is employed in the numerical process due to its use in different studies found in the literature. Effective bond length (Leff) is discussed and an expression depending on the Popovics’ constant (nP) is proposed to calculate it. Assuming a fracture in pure Mode II, the debonding process is analyzed in detail and distributions of bond stresses and strains in the FRP plate along the interface are presented. The load-displacement behaviour is also presented and the influence of the local bond-slip law on the debonding process is discussed.

2009
New Methodology For Reinforced Concrete Beam-Column Cyclic Test, Gião, Rita, Lúcio Valter, Chastre Carlos, and Proença Jorge , International FIB Conference "Concrete - 21st Century Superhero, London, (2009) Abstract

The aim of the present communication is to present an analysis of the gravity load influence on the hysteretic behaviour of a beam-column connection. For this purpose, in the experimental campaign a new procedure for RC cyclic tests is presented in order to reproduce closer demands on the beam critical zone than the traditional procedures. The Experimental campaign included cyclic tests of the specimens according with the ECCS recommendation and an innovate procedure. The test results are presented, compared and analysed. A numerical simulation of the tests is presented where the model for the hysteretic response of the beam was calibrated with the experimental results. Finally, the behaviour of a portal frame system under cyclic displacements up to a drift of 3.5% was analysed, assuming that the non-linearity is concentrated on the plastic hinges, considering different levels of gravity load. Thus it is intended to assess the influence of the gravity load on the behaviour of a structure subjected to cyclic loads.