Coauthored Publications with: Silva

Conference Paper

Biscaia, H, Chastre C, Silva M, Franco N.  2016.  Ligações em superfícies curvas entre compósitos de FRP e betão sujeitas a temperaturas elevadas, 2-4 November 201. Encontro Nacional Betão Estrutural 2016. :13., FCTUC, Coimbra, Portugal Abstractbe_2016_paper_109_biscaia.pdf

O reforço estrutural com materiais de matriz polimérica reforçada com fibras (FRP) em diferentes tipos de elementos estruturais, e.g. pilares, vigas, lajes ou arcos, tem sido objecto de vários estudos. No entanto, os estudos sobre a avaliação da aderência entre ligações coladas em superfícies curvas são muito limitados, não se conhecendo trabalhos, quer analíticos ou numéricos, que se debrucem ainda sobre o efeito da temperatura neste tipo de ligações coladas. Todavia, os trabalhos disponíveis na literatura indicam, de forma unânime, que o descolamento do FRP da superfície curva exige a interacção entre os modos de fractura I e II. Neste sentido, o presente estudo propõe o desenvolvimento de uma solução analítica simples para simular ligações CFRP/betão com superfícies curvas de raio constante e que assumem ambas, isoladamente ou simulataneamente, as acções: (i) aplicação de uma força ao FRP; e (ii) uma a variação de temperatura. Dependendo dos coeficientes de dilatação térmica linear dos materiais colados e para níveis de temperatura não muito superiores à temperatura de transição vítrea (Tg) do FRP, o efeito da temperatura pode ser, do ponto de vista da resistência da ligação, prejudicial ou benéfico, ou seja, pode diminir ou aumentar a capacidade resistente da ligação. Diferentes critérios de rotura são adoptados e diferentes situações, e.g. raio da curva ou diferentes níveis de temperaturas, são abordadas. A solução analítica pressupõe que a lei de aderência relativamente ao modo II de fractura depende da temperatura e é representada por um exponencial, enquanto que para o modo I se assume uma lei de aderência do tipo linear com rotura frágil e cuja influência da temperatura é feita de acordo com os mesmos pressupostos da lei exponencial.

Chastre Rodrigues, C, Silva MG.  2001.  Experimental Investigation of CFRP Reinforced Concrete Columns under Uniaxial Cyclic Compression. FRPRCS-5, 5th International Conference on Fibre Reinforced Plastics for Reinforced Concrete Structures. (Chris Burgoyne, Ed.).:784-792., Cambridge, UK: Thomas Telford Ltd Abstractchastre_rodrigues2001si_-_frprcs-5.pdf

n/a

Silva, MAG, Biscaia HC, Chastre C.  2017.  Aging of some GFRP-concrete joints under external pressure, July 19-21 . AIS2017 - 6th Asia-Pacific Conference on FRP in Structures. , Singapore Abstract

Compressive stresses created by lateral external pressure on laminates are an important factor on success of the use of mechanical anchorage of externally bonded reinforcement (EBR). A program of double shear tests with imposed normal stresses on GFRP plates bonded to a concrete surface and a bond-slip model are described. Results generated numerically are summarized and used as reference values against those obtained after accelerated aging by freeze-thaw cycles, and temperature cycles of the same amplitude but range closer to the glass vitreous temperature. Numerical modelling showed that the bonded length is fully stressed prior to failure. Increasing lateral pressure led to a larger maximum bond stress and strength at the interface. Cohesion, fracture energy and internal friction angle changes are calculated and used to analyze the effects of the aforementioned cycles on the expected behaviour of the GFRP-concrete joints, namely at the interface.

Chastre Rodrigues, C, Silva MG.  2003.  Potencialidade e Limitações dos Novos Materiais de Reforço de Estruturas. RILEM – 57th Annual Week 2003 & Seminário NDB. , Lisboa: LNEC Abstract
n/a
Silva, MG, Chastre Rodrigues C.  2000.  Encamisamento de Pilares de Betão Armado com FRP: Efeitos nas Relações Constitutivas e na Ductilidade. VI Congresso de Mecânica Aplicada e Computacional. , Aveiro Abstract
n/a

Conference Proceedings

Chastre Rodrigues, C, Silva MG.  2001.  The Behaviour of GFRP Reinforced Concrete Columns Under Monotonic and Cyclic Axial Compression. CCC2001, Composites in Construction. :245-250., Porto: A.A.Balkema Abstractchastre_rodrigues2001si_-_ccc2001.pdf

n/a

Biscaia, H, Silva MG, Chastre C.  2008.  Caracterização Experimental e Modelação Numérica da Ligação GFRP/Betão. 7º Congresso de Mecânica Experimental. , Vila Real: UTAD Abstract
n/a
Lucas, D., Biscaia HC, Silva MAG, Chastre C.  2012.  Factores que influenciam o desempenho da ligação GFRP/betão. Betão Estrutural 2012. , Porto: FEUP Abstractlucas2012bisich_-_be2012.pdf

Os compósitos de FRP podem descolar prematuramente da superfíce de betão, isto é, antes de esgotada a sua resistência elástica. Esta situação é mais provável se não forem tidos em conta factores como o tipo de preparação da superfície, a exposição a acção ambiental severa, e a resistência do próprio betão. Com o objectivo de analisar a influência de parte destes factores no desempenho da ligação compósito de fibra de vidro (GFRP) e betão, empreendeu-se uma campanha experimental baseada em ensaios de corte duplo. Os resultados permitiram determinar e comparar as forças máximas transmitidas ao GFRP e tensões de aderência máxima para diferentes tratamentos de superfície e condições de envelhecimento. Foram também determinadas aproximações para curvas de tensão de aderência vs. deslizamento (bond-slip). Os resultados obtidos são contrastados com resultados obtidos por modelação numérica.

Chastre, C, Silva MG.  2008.  Reinforced Concrete Columns Jacketed with FRP Composites and Subjected to Cyclic Horizontal Loads. International Conference CCC2008 - Challenges for Civil Construction. , Porto: FEUP Abstract
n/a
Silva, M. A. G., Biscaia HC, Chastre C.  2012.  Degradação da aderência entre compósitos de GFRP e betão devido a condições ambientais severas. Betão Estrutural 2012. , Porto: FEUP Abstractsilva2012bich_-_be2012_-_feup.pdf

A degradação da ligação entre compósitos de matriz polimérica reforçada por fibras (FRP) e o betão é uma das principais causas de possível rotura das vigas e lajes de betão armado reforçadas
externamente por compósitos de FRP. Desde há mais de 10 anos que se estuda, por isso, na UNL o
comportamento dessa ligação, integrado em programa mais alargado de estudo da durabilidade deste tipo de reforço, especialmente quando sujeito a condições ambientais severas que se simulam por processos artificialmente acelerados no laboratório. Em particular a degradação da aderência e o possível descolamento precoce do reforço têm sido modelados física e computacionalmente com principal incidência no uso de fibras de vidro (GFRP) e resina epoxídica. Nesta comunicação mostram-se resultados obtidos em termos de capacidade de carga, força transmitida ao reforço e tensões de aderência após envelhecimentos de pequenas vigas de betão armado (BA) por ciclos de nevoeiro salino, ciclos seco/molhado em solução salina, ciclos de temperatura entre +7,5ºC e +47,5ºC e gelo-degelo de -10ºC a +30ºC. Faz-se recomendação quanto à extensão máxima para diferentes envelhecimentos. Apresenta-se comparação entre resultados de modelação numérica e experimental.

Biscaia, H, Silva MG, Chastre C.  2009.  Bond GFRP-Concrete under environmental exposure. 15th International Conference on Composite Structures ICCS 15. , Porto: FEUP Abstractbiscaia2009sich_-_iccs15.pdf

Fiber reinforced polymers (FRP) are often used to strengthen RC structures.
Despite intense research, durability of reinforced concrete (RC) retrofitted with FRP remains insufficiently known. Long time behavior of the bond laminate-concrete, in flexural strengthening, under environmental action is not well known, conditioning Codes and engineers. An experimental program that subjected RC beams, externally reinforced with Glass FRP (GFRP) strips, to temperature and salt water cycles, for up to 10000h is reported.
At selected intermediate times, the RC beams were loaded to failure in bending. Rupture took place, normally, by tensile failure of concrete at a short distance from the interface with GFRP. The results showed that freeze-thaw cycles were the most severe of the environmental
conditions. The study also generated also non-linear bond-slip relationships from the experimental data. Numerical modeling has been undertaken, based on a commercial code.
The model is based on smeared cracking. Parameters needed for the characterization, namely cohesion and friction angle, were obtained from shear tests conceived for the effect.

Chastre Rodrigues, C, Silva MAG.  2005.  The behaviour of RC columns retrofitted with FRP or polymeric concrete under axial compression and cyclic horizontal loads, Oct 20-21. 9th International Conference on Inspection, Appraisal, Repairs and Maintenance of Structures. (Ren, W. X. Ong K. C. G. Tan J. S. Y., Ed.).:393-400., Fuzhou, PEOPLES R CHINA: Ci-Premier Pte Ltd Abstract

The seismic retrofit of reinforced concrete columns with FRP jackets has received a considerable increment in recent years due the high strength-weight and stiffness-weight ratios of FRP compared to other materials. The FRP outer shell also contributes to prevent or delay environmental degradation of the concrete and corrosion of the steel reinforcement. An experimental program conducted in order to analyze the behavior of reinforced concrete columns jacketed with FRP composites or repaired with polymeric concrete and subjected to axial compression and cyclic horizontal loads is described. The dimensions of the cylindrical columns were 1500 mm height by 250 mm diameter. The influence of various parameters on the response, including the type of confining material and the number of FRP layers, is reported. The results of the tests are shown and interpreted.

Journal Article

Chastre, C, Silva MAG.  2010.  Monotonic axial behavior and modelling of RC circular columns confined with CFRP, Aug. Engineering Structures. 32:2268-2277., Number 8 AbstractWebsite

The retrofit of reinforced concrete columns with FRP jackets has received considerable attention in recent years. The advantages of this technique compared to other similar techniques include the high strength-weight and stiffness-weight ratios of FRP (Fibre Reinforced Plastics), the strength and ductility increase of RC columns confined with FRP jackets as well as the fact that FRP external shells prevent or mitigate environmental degradation of the concrete and consequent corrosion of the steel reinforcement. Furthermore, this method also reduces the column transversal deformation and prevents the buckling of longitudinal reinforcement. Twenty five experimental tests were carried out on reinforced concrete columns confined with CFRP composites, and subjected to axial monotonic compression. In order to evaluate the influence of several parameters on the mechanical behavior of the columns, the height of the columns was maintained, while changing other parameters: the diameter of the columns, the type of material (plain or reinforced concrete), the steel hoop spacing of the RC columns and the number of CFRP layers. Predictive equations, based on the experimental analysis, are proposed to estimate the compressive strength of the confined concrete, the maximum axial load and the axial or the lateral failure strain of circular RC columns jacketed with CFRP. A stress-strain model for CFRP confined concrete in compression, which considers the effect of the CFRP and the transversal reinforcement on the confined compressive strength of the column is also proposed. The curves, axial load versus axial or lateral strain of the RC column, are simulated based on the stress-strain model and include the longitudinal reinforcement effect. The results demonstrate that the model and the predictive equations represent very well the axial compression behavior of RC circular columns confined with CFRP. The applicability of this model to a large spectrum of RC column dimensions is its main advantage.

Biscaia, HC, Chastre C, Silva MAG.  2013.  Modelling GFRP-to-concrete joints with interface finite elements with rupture based on the Mohr-Coulomb criterion, 10//. Construction and Building Materials. 47:261-273. AbstractWebsite

The strengthening of reinforced concrete structures by means of externally bonded fibre reinforced polymers (FRPs) is now routinely considered and applied in the retrofit or strengthening of structures. FRP composites have received a considerable attention from civil engineers in recent years due to the high strength-weight and stiffness/weight ratios when compared to other materials. However, when FRP composites are bonded to a concrete surface, there is a persistent potential problem that the FRP plates may debond prematurely from the concrete. This is a very important issue for the engineers who have to focus on the computational modelling of this phenomenon. Some studies can be found in literature on computational modelling. However, there is very little information about the best modelling of the interface between FRP composites and concrete and this work is intended to help bridge this gap. The computational analysis presented here is based on three-dimensional software which assumes the smeared crack model, and the interface finite elements (FEs) used have a rupture criteria based on the Mohr-Coulomb criterion with tension cut-off. The definition of these FEs was based on double shear tests that were performed specifically for this purpose and they have shown that the debonding phenomenon can be predicted with some accuracy. In total, 10 double shear models were studied and the results were compared with the 21 experimental tests performed. The double shear tests consisted of applying loads to 2 layered GFRP laminates bonded to a 150 mm concrete cube with a bonded area of 150 × 80 mm (length × width). Double shear models with and without a gap interface were considered in order to emphasize the importance of modelling the GFRP-to-concrete interface with interface finite elements. The effect of the concrete strength on the interface performance was also considered. An externally bonded reinforcement (EBR) concrete T-beam strengthened with 2 GFRP layers is presented to illustrate the application of the method. The wet lay-up technique was used for the external reinforcement of a reinforced concrete T-beam and then tested under a four point bending test until rupture. The results are reported and differences between the numerical and the experimental results are discussed.

Biscaia, HC, Chastre C, Silva MAG.  2019.  A Simple Method for the Determination of the Bond-Slip Model of Artificially Aged Joints. Journal of Composites for Construction. 23:04019028., Number 4 AbstractWebsite

The durability of adhesively bonded fiber-reinforced polymers (FRP) and concrete substrates has been the subject of recent studies. The degradation of bonded interfaces conjugated with other factors that affect the interface strength may compromise the potentialities of using FRP in externally bonded reinforced (EBR) concrete structures. However, the estimation of the effects of degradation on these bonded interfaces and the analytical methodologies to quantify them are not fully understood. The present work focuses on a local bond-slip model characterized by two parameters for which the values are obtained experimentally. Then, the determination of the local bond-slip relationship of a glass (G) FRP-to-concrete interface can be estimated. The assessment of the degradation of the bonded interface when subjected to cycles of (1) salt fog; (2) wet-dry environments with salt water; (3) temperatures between −10°C and +30°C; and (4) temperatures between +7.5°C and +47.5°C is presented. The results obtained using the proposed bond-slip model led to the conclusion that after 10,000 h of exposure to temperature cycles between −10°C and +30°C, there was a small change in the GFRP-to-concrete interface performance, whereas the effects on the bonded interface for the specimens subjected to temperature cycles between +7.5°C and +47.5°C were far more most severe.

Rodrigues, CC, Silva MAG.  2007.  Cyclic compression behaviour of polymer concrete. Journal of Polymer Engineering. 27:525-545., Number 6-7 Abstractrodrigues07si.pdfWebsite

Polymeric mortars or concrete are special building materials which can be used to repair or strengthen localized areas of structural elements. Following research on the behaviour of retrofitting reinforced concrete circular columns with FRP composite materials and bearing in mind the high strength of polymer concretes, it was decided to develop a solution to seismic retrofit of reinforced concrete columns with polymer concrete. The mechanical characteristics of different polymer concretes and especially their performance when subjected to cyclic axial compression, several bending tests, and monotonic and cyclic axial compression tests were studied, namely the compressive strength, the tensile strength on bending and the Young's modulus. Columns were also tested under axial compression and cyclic horizontal loads. The results of these tests are shown and interpreted. It is concluded that the improved behaviour in monotonic compression of polymer concrete is essentially associated with better strength characteristics of resin, whereas its superior behaviour under cyclic loading is linked to a smoother aggregate grading curve.

Biscaia, HC, Chastre C, Silva MAG.  2015.  Bond-slip model for FRP-to-concrete bonded joints under external compression, 10//. Composites Part B: Engineering. 80:246-259. AbstractWebsite

The influence of compressive stresses exerted on FRP-concrete joints created by external strengthening of structural members on the performance of the system requires better understanding especially when mechanical devices are used to anchor the externally bonded reinforcement (EBR). The numerical modelling of those systems is a tool that permits insight into the performance of the corresponding interfaces and was used in the present study, essentially directed to analyse the effectiveness of EBR systems under compressive stresses normal to the composite surface applied to GFRP-to-concrete interfaces. The compressive stresses imposed on the GFRP-to-concrete interface model the effect produced by a mechanical anchorage system applied to the EBR system. An experimental program is described on which double-lap shear tests were performed that created normal stresses externally applied on the GFRP plates. A corresponding bond-slip model is proposed and the results of its introduction in the numerical analysis based in an available 3D finite element code are displayed, showing satisfactory agreement with the experimental data. The results also showed that lateral compressive stresses tend to increase the maximum bond stress of the interface and also originate a residual bond stress which has significant influence on the interface strength. Also, the strength of the interface increases with the increase of the bonded length which have consequences on the definition of the effective bond length.

Biscaia, HC, Chastre C, Silva MAG.  2012.  Double shear tests to evaluate the bond strength between GFRP/concrete elements. Composite Structures. 94:681-694., Number 2 AbstractWebsite

Externally bonded reinforced systems have been widely used in civil engineering. However, the problems associated with bond between structural elements are not yet fully solved. As a consequence, many researchers have been proposing tests and techniques to standardize procedures and reach better agreement for design purposes. In the present paper, an experimental program is described that was developed to characterize the glass FRP/concrete interface by double shear tests made on 15 cm side cubes with GFRP bonded on two opposite faces. The GFRP wrap had two layers applied by the wet lay-up technique and three classes of concrete were considered. With the support of the experimental program, cohesion and friction angle for GFRP–concrete interfaces were found leading to different envelope failure laws, based on the Mohr–Coulomb failure criterion for each concrete class, capable of predicting GFRP debonding. Results are discussed.

Biscaia, HC, Chastre C, Silva MAG.  2013.  Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces. Composites Part B: Engineering. 50:210-223. AbstractWebsite

The paper analyses numerical solutions for the process leading to debonding failure of fiber reinforced polymers (FRP)-to-concrete interfaces in shear tests with the FRP plate subjected to a tensile load at one end. Any realistic local nonlinear bond-slip law can be used in the numerical analysis proposed in the present study. However, only a Popovics’ type expression is employed in the numerical process due to its use in different studies found in the literature. Effective bond length (Leff) is discussed and an expression depending on the Popovics’ constant (nP) is proposed to calculate it. Assuming a fracture in pure Mode II, the debonding process is analyzed in detail and distributions of bond stresses and strains in the FRP plate along the interface are presented. The load-displacement behaviour is also presented and the influence of the local bond-slip law on the debonding process is discussed.

Biscaia, HC, Chastre C, Silva MAG.  2019.  Estimations of the debonding process of aged joints through a new analytical method, 2019/03/01/. Composite Structures. 211:577-595. AbstractWebsite

The estimation of the long-term durability of adhesively bonded interfaces between Fiber Reinforced Polymers (FRP) and concrete substrates is crucial because degradation potentiates FRP premature debonding. One of the main reasons for mistrusting the use of FRP composites is the premature debonding phenomenon, which, associated to degradation, has been preventing their widespread use. In this research work, an analytical model is proposed that introduces ageing to estimate the effects of degradation of Glass (G) FRP externally bonded to concrete. Cycles were used to experimentally accelerate ageing of beam specimens, namely, (i) salt fog cycles; (ii) wet-dry cycles with salted water; (iii) temperature cycles between −10 °C and +30 °C; and (iv) temperature cycles between +7.5 °C and +47.5 °C. Based on the experimental results obtained and a corresponding bond-slip curve, the analytical model predicts the complete debonding process between FRP composites and a substrate. Consequently, the temporal evolution of the degradation of the bonded interfaces can be calculated and compared with the initial situation prior to exposure. The effects of the environmental conditions are reported and compared.

Biscaia, HC, Silva MAG, Chastre C.  2015.  Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfaces, 2014/06/29. Materials and Structures. 48(9):2961-2981.: Springer Netherlands AbstractWebsite

Fibre reinforced polymer (FRP) composites may prematurely debond from the surface of concrete, i.e. before its elastic resistance is exhausted. This is a very common situation and can be aggravated if additional factors are not taken into account. These factors include the type of surface preparation, the exposure to aggressive environmental action, the tensile concrete strength or fatigue and creep loading to which the structural element may be subject. An experimental programme based on double shear tests was undertaken to analyse the influence of some of these factors on the performance of the interface between composite glass fibres (GFRP) and concrete. The results allowed the determination and comparison of maximum loads transmitted to the GFRP plates and maximum bond stresses obtained considering various surface treatments and aging conditions. Bond–slip curves were also determined. The experimental results are compared with those obtained from a numerical analysis.

Biscaia, H, Chastre C, Silva C, Franco N.  2018.  Mechanical Response of Anchored FRP bonded joints: A Nonlinear Analytical Approach. Mechanics of Advanced Materials and Structures. Abstract

The paper presents a nonlinear analytical solution for the prediction of the full-range debonding response of mechanically-anchored FRP composites from the substrate. The nonlinear analytical approach predicts, for any monotonic loading history or bonded length the relative displacements (or slips) between materials, the strains in the FRP composite, the bond stresses within the interface and the stresses developed in the substrate. The load-slip responses FRP-to-substrate interfaces with a short and a long bonded lengths are motive of analysis and discussion. The solutions obtained from the proposed approach are also compared with other experimental results found in the literature.

Silva, MAG, Rodrigues CC.  2006.  Size and Relative Stiffness Effects on Compressive Failure of Concrete Columns Wrapped with Glass FRP. Journal of Materials in Civil Engineering. 18(3):334-342. AbstractWebsite

Structural design relies essentially on tests made on cylinders of small size to estimate the probability of failure of prototype members, since full-scale testing of structures to determine their strength is not feasible. The confidence that such scale modeling deserves in terms of representation of actual behavior needs careful examination, due to such factors as material nonlinearities, difficulties of scale representation of particulate materials, and sometimes the impossibility of simultaneously satisfying independent dimensionless parameters. Some failures explained by linear fracture mechanics are associable with strong size effects, as opposed to the cases where small cracks are a material property. Besides research centered on these problems, a number of studies of scale effects have been associated with the increased probability of finding a flaw in larger objects. In fact, geometric similitude may coexist with microscopic randomness of flaws that cause size effects to appear. The type of material of the object under study may also be a decisive factor. For example, scatter of the mechanical properties in unidirectional fiber-reinforced polymers (FRPs) is much larger than in metals due to a larger density of flaws. Thus the strength of FRP laminates may depend on the volume of material involved. Strengthening reinforced concrete columns with FRP wraps leads to new constitutive laws for the overall response of the columns and requires small-scale testing followed by extrapolation for design use. The present paper focuses on the difficulties of this step, based on the experimental data obtained. The questions mentioned above are addressed, and the relevance of the adequate representation of the lateral stiffness of the FRP jacket in the scaled cylinders is emphasized. The paper also addresses the problem of testing confined cylinders with a given slenderness ratio H/D=height/diameter, within the range usually characteristic of short columns, and extrapolating the results for columns of different H/D. The importance of the parameter (thickness of jacket/diameter of column, representative of stiffness of jacket/stiffness of concrete core) is also examined. The influence of the parameter is shown to be relatively minor, whereas the nonscaling of the relative stiffness of the core and jacket would be a major cause of error. The experimental data, in terms of strain and strength, are also compared with numerical models proposed in the literature, and the quality of the approximations is analyzed.