Publications

Export 56 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
P
Prabakaran, R.a, Peres Monteiro Fortunato Martins Ferreira M. b T. b. "The effects of ZnO coating on the photoluminescence properties of porous silicon for the advanced optoelectronic devices." Journal of Non-Crystalline Solids. 354 (2008): 2181-2185. AbstractWebsite

In the present work we investigate, the role of zinc oxide (ZnO) thin films passivating layer deposited by rf magnetron sputtering at room temperature on low (18%) and high (80%) porosity porous silicon (PS). The micro-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) analysis have been carried out to understand the effect of ZnO films coating on PS. A systematic investigation from Raman spectroscopy suggests the formation of a good quality ZnO wurtzite structure on PS. The photoluminescence (PL) measurements on PS and ZnO coated PS shows a red, blue and UV emission bands at around ∼1.8, ∼2.78 and ∼3.2 eV. An enhancement of all PL emission bands have been achieved after ZnO films deposition on high porosity PS. © 2007 Elsevier B.V. All rights reserved.

R
Rozati, S.M.a, Moradi Golshahi Martins Fortunato S. a S. a. "Electrical, structural and optical properties of fluorine-doped zinc oxide thin films: Effect of the solution aging time." Thin Solid Films. 518 (2009): 1279-1282. AbstractWebsite

In this paper ageing effects of the solution used to prepare fluorine-doped ZnO films by the spray pyrolysis technique were investigated, concerning its role on the structure, the electrical and optical properties of films produced. The data reveal that the sheet resistance of the ZnO:F thin film decreases with the age of the solution used, reaching a minimum of 24 Ω/□, after 15 days. On the other hand the optical transmittance increases for films deposited using 6 days aging solution, decreasing afterwards as the aging time increases, being the optical transmittance in the visible range below 55%, for films deposited from solutions 36 days in age. The X-ray diffraction spectra show that the aged films are polycrystalline in nature with a [100] predominant orientation. The data also show that the intensity of (100) peak increases as the time of solution age increases, which is related to an improvement of the film crystallinity. © 2009 Elsevier B.V. All rights reserved.

S
Sekhar, M.C.a, Uthanna Martins Chandra Elangovan S. a R. b. "The effect of Substrate temperature on physical and electrical properties of DC magnetron sputtered (Ta 2O 5) 0.85(TiO 2) 0.15 films." IOP Conference Series: Materials Science and Engineering. Vol. 34. 2012. Abstract

Thin films of (Ta 2O 5) 0.85(TiO 2) 0.15 were deposited on quartz and p-Si substrates by DC reactive magnetron sputtering at different substrate temperatures (T s) in the range 303 - 873 K. The films deposited at 303 0K were in the amorphous and it transformed to crystalline at substrate temperatures ≥ 573 0K. The crystallite size was increased from 50 nm to 72 nm with the increase of substrate temperature. The surface morphology was significantly influenced with the substrate temperature. After deposition of the (Ta 2O 5) 0.85(TiO 2) 0.15 films on Si, aluminium (Al) electrode was deposited to fabricate metal/oxide/semiconductor (MOS) capacitors with a configuration of Al/(Ta 2O 5) 0.85(TiO 2) 0.15/Si. A low leakage current of 7.7 × 10 -5 A/cm 2 was obtained from the films deposited at 303 K. The leakage current was decreased to 9.3 × 10 -8 A/cm 2 with the increase of substrate temperature owing to structural changes. The conduction mechanism of the Al/(Ta 2O 5) 0.85(TiO 2) 0.15/Si capacitors was analyzed and compared with mechanisms of Poole-Frenkel and Schottky emissions. The optical band gap (E g) was decreased from 4.45 eV to 4.38 eV with the increase in substrate temperature. © Published under licence by IOP Publishing Ltd.

T
Topic, M., Smole Furlan Fortunato Martins F. J. E. "Examination of 1-D position sensitive detector performance through analysis of front contact heterojunction." Materials Research Society Symposium - Proceedings. Vol. 420. 1996. 171-176. Abstract

The influence of different TCOs (SnO2 and ITO) on the photoelectrical properties of 1-D position sensitive detectors based on p-i-n structures was studied. A strong cross-contamination in the p-layer and contamination in the i-layer reduce the quality of the device. Numerical analysis of TCO/p-i-n structure also revealed a strong increase in defect states at the p-layer surface which can be attributed to the reduction of TCO. ITO seems to be less appropriate for a front TCO, although the spectral response of the p-i-n structure under reverse bias is not significantly affected by the conditions at the TCO/p heterojunction.

W
Wang, J.a, Elamurugu Li Jiao Zhao Martins Fortunato E. b H. a. "Effect of N and P codoping on ZnO properties." Advanced Materials Research. 645 (2013): 64-67. AbstractWebsite

Nitrogen and Phosphorus co-doped (N+P)- zinc oxide (ZnO) films were RF sputtered on corning glass substrates at 350 °C and comparatively studied with undoped, N-, and P- doped ZnO. X-ray diffraction spectra confirmed that the ZnO structure with a preferred orientation along <002> direction. Scanning electron microscope analysis showed different microstructure for the N+P co-doping, and thus probably confirming the co-existence of both the dopants. X-ray photoelectron spectroscopy spectra revealed that the chemical composition in N+P co-doped ZnO are different from that found in undoped, N-, and P- doped ZnO. The atomic ratio of N and P in N+P co-doped ZnO is higher than that in single N or P doped ZnO. One broad ZnO emission peak around 420 nm is observed in photoluminescence spectra. The relative intensity of the strongest peak obtained from co-doped ZnO films is about twice than the P- doped and thrice than the pure and N- doped films. © (2013) Trans Tech Publications, Switzerland.

Wang, J.a, Elamurugu Sallet Jomard Lusson Rego Barquinha Gonçalves Martins Fortunato E. a V. b. "Effect of annealing on the properties of N-doped ZnO films deposited by RF magnetron sputtering." Applied Surface Science. 254 (2008): 7178-7182. AbstractWebsite

N-doped ZnO films were deposited by RF magnetron sputtering in N2/Ar gas mixture and were post-annealed at different temperatures (Ta) ranging from 400 to 800 °C in O2 gas at atmospheric pressure. The as-deposited and post-annealed films were characterized by their structural (XRD), compositional (SIMS, XPS), optical (UV-vis-NIR spectrometry), electrical (Hall measurements), and optoelectronic properties (PL spectra). The XRD results authenticate the improvement of crystallinity following post-annealing. The weak intensity of the (0 0 2) reflection obtained for the as-deposited N-doped ZnO films was increased with the increasing Ta to become the preferred orientation at higher Ta (800 °C). The amount of N-concentration and the chemical states of N element in ZnO films were changed with the Ta, especially above 400 °C. The average visible transmittance (400-800 nm) of the as-deposited films (26%) was increased with the increasing Ta to reach a maximum of 75% at 600 °C but then decreased. In the PL spectra, A0X emission at 3.321 eV was observed for Ta = 400 °C besides the main D0X emission. The intensity of the A0X emission was decreased with the increasing Ta whereas D0X emission became sharper and more optical emission centers were observed when Ta is increased above 400 °C. © 2008 Elsevier B.V. All rights reserved.