Publications

Export 7 results:
Sort by: Author Title [ Type  (Asc)] Year
Conference Paper
Drasovean, R. a, R. b Monteiro, and M. c Cherif. "Structure and morphology study of cobalt oxide doped silica nanocomposite films." AIP Conference Proceedings. Vol. 1203. 2010. 483-488. Abstract

Cobalt oxide doped silica films were synthesized by a dip-coating technique. Initial compounds were cobalt acetate Co(CH3COO)2-4H 2O and tetraethoxysilane Si(OC2H5)4. The chemical composition was studied by X-ray diffraction and UV-Vis spectroscopy. The morphology analyses were carried out by means of atomic force microscopy. The average diameter of cobalt oxide dispersed particles increases with the molar ratio Co:Si and with the aging time of the initial colloidal solution. © 2009 American Institute of Physics.

Journal Article
Ribeiro, A. S. M. a, R. C. C. b Monteiro, E. J. R. a Davim, and M. H. V. a Fernandes. "Ash from a pulp mill boiler-Characterisation and vitrification." Journal of Hazardous Materials. 179 (2010): 303-308. AbstractWebsite

The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53μm, and a high amount of SiO2 (∼82wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na2O were added to act as fluxing agent. A batch with 80wt% waste load melted at 1350°C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial. © 2010 Elsevier B.V.

Monteiro, R. C. C. a, C. F. a Figueiredo, M. S. a Alendouro, M. C. b Ferro, E. J. R. b Davim, and M. H. V. b Fernandes. "Characterization of MSWI bottom ashes towards utilization as glass raw material." Waste Management. 28 (2008): 1119-1125. AbstractWebsite

The characterization of the bottom ashes produced by two Portuguese municipal solid waste incinerators (MSWI) was performed with the aim of assessing the feasibility of using this waste as raw material in the production of glass that can be further processed as glass-ceramics for application in construction. Density and particle size distribution measurements were carried out for physical characterization. Chemical characterization revealed that SiO2, a network glass former oxide, was present in a relatively high content (52-58 wt%), indicating the suitability for this waste to be employed in the development of vitreous materials. CaO, Na2O and K2O, which act as fluxing agents, were present in various amounts (2-17 wt%) together with several other oxides normally present in ceramic and glass raw materials. Mineralogical characterization revealed that the main crystalline phases were quartz (SiO2) and calcite (CaCO3) and that minor amounts of different alkaline and alkaline-earth aluminosilicate phases were also present. Thermal characterization showed that the decomposition of the different compounds occurred up to 1100 °C and that total weight loss was <10 wt%. Heating both bottom ashes at 1400 °C for 2 h resulted in a melt with suitable viscosity to be poured into a mould, and homogeneous black-coloured glasses with a smooth shiny surface were obtained after cooling. The vitrified bottom ashes were totally amorphous as confirmed by X-ray diffraction. The results from the present experimental work indicate that the examined bottom ashes can be a potential material to melt and to obtain a glass that can be further processed as glass-ceramics to be applied in construction. © 2007 Elsevier Ltd. All rights reserved.

Barbosa, A. R. J. a, A. A. S. a Lopes, S. I. H. a Sequeira, J. P. a Oliveira, A. b Davarpanah, F. b Mohseni, V. S. b Amaral, and R. C. C. a Monteiro. "Effect of processing conditions on the properties of recycled cathode ray tube glass foams." Journal of Porous Materials. 23 (2016): 1663-1669. AbstractWebsite

Cathode ray tube glass waste was used to produce glass foams by a powder sintering route. The glass waste powder was mixed with small amounts (5 and 8 wt%) of coal fly ash, which acted as foaming agent, and the compacts of the mixed powders were heated at different sintering temperatures in the range 600–800 °C for various dwell times (30–120 min). The effect of the different processing conditions on the microstructural characteristics (porosity, pore size and pore size distribution), mechanical resistance and thermal conductivity of the produced foams was investigated. The volume of pores tended to increase with sintering temperature and time, and glass foams (with a porosity higher than 50 %) were only achieved after sintering at 750 °C. The average pore size increased with sintering temperature and dwell time, and pore growth was particularly accentuated at 800 °C, where coalescence of the pores occurred, with a consequent decrease in compressive strength. Selected combinations of the sintering temperature, dwell time and foaming agent led to glass foams with a satisfactory microstructural homogeneity, which exhibited mechanical strength and thermal conductivity values similar to commercial foams used as thermal insulating materials. © 2016, Springer Science+Business Media New York.

Davim, E. a, M. H. V. a Fernandes, and R. C. C. b Monteiro. "Glass-ceramics produced from incinerated municipal solid waste." Glass Technology: European Journal of Glass Science and Technology Part A. 48 (2007): 164-167. AbstractWebsite

A homogeneous black coloured glass was obtained by melting the bottom ashes produced by a municipal solid waste incinerator at 1300°C for 2 h without any chemical additives. Based on thermal analysis data glass-ceramics were produced by heat treating the glass, doped with additional TiO2 as a nucleating agent, at temperatures between 870 and 1000°C. The crystalline phases precipitated during the heat treatments were identified by powder XRD and the microstructures were examined using SEM. After a heat treatment at 900°C for 2 h, the glass was converted into a fine grained glass-ceramic with uniform microstructure. The major crystalline phases precipitated in the glass-ceramics were augite (Ca(Mg,Fe)Si2O6), gehlenite (Ca2Al2SiO7) and clinopyroxene (Ca(Ti,Mg,Al)(Si,Al)2O6). Preliminary evaluation of the mechanical and chemical properties of the bottom ash glasses and glass-ceramics suggest that they have potential to compete with existing natural and commercial outdoor cladding materials.

Drasovean, R. a, R. b Monteiro, E. b Fortunato, and V. c Musat. "Optical properties of cobalt oxide films by a dipping sol-gel process." Journal of Non-Crystalline Solids. 352 (2006): 1479-1485. AbstractWebsite

Cobalt oxide thin films were prepared by using the dipping sol-gel process. The films were deposited onto glass slides, starting from methanolic solution of cobalt acetate Co(CH3COO)2 · 4H2O. The effects of film thickness and sol concentration on structural and optical properties were studied. Structural analyses of Co3O4 films were performed by X-ray diffraction. The film thickness was varied by using different withdrawal speeds and the number of dipping-heating cycles. It was found that the grain size increases with the number of dipping N. The results point out to some compacting effect that increases with the number of dippings: the films exhibit direct and indirect optical transition, absorption coefficients are of the order of 104 cm-1, and upon annealing the absorption coefficient increases. © 2006 Elsevier B.V. All rights reserved.

Monteiro, R. C. C. a, A. A. S. a Lopes, M. M. A. a Lima, J. P. a Veiga, R. J. C. a Silva, C. J. a Dias, E. J. R. b Davim, and M. H. V. b Fernandes. "Sintering, crystallization, and dielectric behavior of barium zinc borosilicate glasses-Effect of barium oxide substitution for zinc oxide." Journal of the American Ceramic Society. 95 (2012): 3144-3150. AbstractWebsite

Barium zinc borosilicate glasses with a molar composition xBaO-(60-x)ZnO-30B 2O 3-10SiO 2, where x ranged from 0 to 60 mol%, were prepared using melt-quenching method. The effect of BaO substitution for ZnO on the sintering, crystallization, and dielectric characteristics has been investigated. The behavior of the studied barium zinc borosilicate glasses was mainly determined by the relative amount of the structural modifier oxides (BaO and ZnO) and the ionic size, and field strength of the modifying cations (Ba 2+, Zn 2+). Increased amounts of BaO decreased both glass transition temperature and crystallization temperature, while increasing the relative dielectric constant. Sintering occurred before crystallization for glasses where substitution of BaO for ZnO was up to 30 mol%, but for higher substitution levels, crystallization occurred during the sintering process hindering densification. © 2012 The American Ceramic Society.