Dirani, E.A.T., Pereyra Andrade Soler Martins I. A. M. "
Effect of the deposition parameters on the electro optical properties and morphology of microcrystalline hydrogenated silicon alloys."
Conference Record of the IEEE Photovoltaic Specialists Conference. Vol. 2. 1990. 1588-1590.
AbstractMicrocrystalline phosphorus-doped hydrogenated silicon alloy films were deposited in a remote plasma CVD (chemical vapor deposition) system. The film properties were studied as a function of RF power density and hydrogen concentration in the reaction gas mixture. The properties of the deposited films are extremely sensitive to the RF power density in the studied range of 250 mW/cm2 to 625 mW/cm2. Very low values of electrical resistivity were obtained. For an RF power density of 500 mW/cm2, ρ = 3 × 10-2 Ω-cm, while ρ = 1.9 × 103 Ω-cm for 625 mW/cm2, indicating the predominance of the amorphous tissue over the microcrystalline phase. High doping efficiencies which can be correlated to large grain size are indicated by the very low values of the activation energy as low as 30 meV for 500 mW/cm2, that were obtained.
Valtchev, Stanimir, and Ben J. Klaassens. "
Efficient Resonant Power Conversion."
IEEE Transactions on Industrial Electronics. 37 (1990): 490-495.
AbstractThe DC analysis of a series-resonant converter operating above resonant frequency is presented. The results are used to analyze the current form factor and its effect on the efficiency. The selection of the switching frequency to maximize the efficiency is considered. The derived expressions are generalized and can be applied to calculations in any of the switching modes for a series-resonant circuit. For switching frequencies higher than the resonant frequency, an area of more efficient operation is indicated which will aid in the design of this class of converters and power supplies. It is pointed out that (especially for power MOSFETs where ohmic losses dominate) it is more attractive to select switching frequencies that are higher than the resonant frequency because of the possibility of nondissipative snubbers. Slowing down the rise of the gate voltage and, hence, the slow decrease of ON resistance during turn-on is also not a drawback to high-frequency switching. Because of this safer operation, the standard intrinsic diode of the power MOSFET could be used at high frequencies instead of the more expensive FREDFET