Neuparth, Nuno, Daniel Aelenei, Iolanda Caires, João Teixeira, João Viegas, Manuela Cano, Paula Leiria-Pinto, and Pedro Martins Environment and Health in Children Day Care Centers - Ambiente e Sa. Eds. Nuno Neuparth, Daniel Aelenei, Iolanda Caires, Joao Paulo Teixeira, Jo Viegas, Manuela Cano, Paula Leiria Pinto, and Pedro Martins. Universidade Nova de Lisboa, 1169-056 Lisboa: Faculdade de Ciências Médicas, 2013.
Nandy, Suman, Goncalo Goncalves, Joana Vaz Pinto, Tito Busani, Vitor Figueiredo, Luis Pereira, Rodrigo Ferrao Paiva Martins, and Elvira Fortunato. "
Current transport mechanism at metal-semiconductor nanoscale interfaces based on ultrahigh density arrays of p-type NiO nano-pillars."
Nanoscale. 5.23 (2013): 11699-11709.
AbstractThe present work focuses on a qualitative analysis of localised I-V characteristics based on the nanostructure morphology of highly dense arrays of p-type NiO nano-pillars (NiO-NPs). Vertically aligned NiO-NPs have been grown on different substrates by using a glancing angle deposition (GLAD) technique. The preferred orientation of as grown NiO-NPs was controlled by the deposition pressure. The NiO-NPs displayed a polar surface with a microscopic dipole moment along the (111) plane (Tasker's type III). Consequently, the crystal plane dependent surface electron accumulation layer and the lattice disorder at the grain boundary interface showed a non-uniform current distribution throughout the sample surface, demonstrated by a conducting AFM technique (c-AFM). The variation in I-V for different points in a single current distribution grain (CD-grain) has been attributed to the variation of Schottky barrier height (SBH) at the metal-semiconductor (M-S) interface. Furthermore, we observed that the strain produced during the NiO-NPs growth can modulate the SBH. Inbound strain acts as an external field to influence the local electric field at the M-S interface causing a variation in SBH with the NPs orientation. This paper shows that vertical arrays of NiO-NPs are potential candidates for nanoscale devices because they have a great impact on the local current transport mechanism due to its nanostructure morphology.
Kullberg, J. C., R. B. Rocha, A. F. Soares, J. Rey, P. Terrinha, A. C. Azerêdo, P. Callapez, Duarte, L.V., M. C. Kullberg, L. Martins, J. R. Miranda, C. Alves, J. Mata, J. Madeira, O. Mateus, M. Moreira, and C. R. Nogueira. "
A Bacia Lusitaniana: Estratigrafia, Paleogeografia e Tectónica."
Geologia de Portugal no contexto da Ibéria. Volume II. Ed. Terrinha Kullberg A. P. J. C. and Dias, R. Araújo. Lisboa: Escolar Editora, 2013. 195-350.