Effects of ultraviolet excitation on the spectroscopic properties of Sm3+ and Tb3+ doped aluminophosphate glasses

Nico, C. a, M. P. F. a Graça, M. b Elisa, B. A. b Sava, R. C. C. c Monteiro, L. a Rino, and T. a Monteiro. "Effects of ultraviolet excitation on the spectroscopic properties of Sm3+ and Tb3+ doped aluminophosphate glasses." Optical Materials. 35 (2013): 2382-2388.


Li2O-BaO-Al2O3-La2O 3-P2O5 glasses optically activated with rare earth ions with the 4f5, and 4f8 electronic configuration (Sm3+ and Tb3+, respectively) were analyzed by Raman spectroscopy, absorption, excitation photoluminescence, decay curves and temperature dependent photoluminescence. The spectroscopic characteristics of the as-prepared and heat treated samples at temperatures below and above T g were studied as well as their room temperature photometric properties under ultraviolet excitation. All the doped glasses exhibit typical signatures of the lanthanides in their trivalent charge state. For the samarium doped glass heat treated at 250 C (<Tg) the Sm2+ luminescence was also observed. The analysis of the luminescence efficiency was performed in the interval range of 14 K to room temperature, where the integrated intensity of the luminescence was found to decrease for the Sm 3+ and Tb3+ ions in the studied temperature range. Luminescence decay curves were found to be non-exponential for the 4G5/2 → 6H7/2 and 5D3 → 7F4 transitions of the Sm3+ and Tb3+ ions, respectively. The results strongly suggest the occurrence of energy transfer processes through cross relaxation phenomena, mediated by dipole-dipole interaction in all the studied samples. The decay of the 5D4 → 7F5 emission of the Tb3+ ions was found to be single exponential with a time constant of ∼3.1 ms. Based on the spectroscopic characteristics, models for recombination processes are proposed. The room temperature luminance photometric properties with ultraviolet excitation show that the samarium doped glasses have much lower luminance intensity (around 0.3 Cd/m2) when compared with the 6-7 Cd/m2 observed for the terbium doped ones. © 2013 Elsevier B.V. All rights reserved.


cited By 6

Related External Link