Paulino, Hervé, João André Martins, João Louren{\c c}o, and Nuno Duro. "
SmART: An Application Reconfiguration Framework."
Complex Systems Design & Management. Eds. Marc Aiguier, Francis Bretaudeau, and Daniel Krob. Springer Berlin Heidelberg, 2010. 73-84.
AbstractSmART (Smart Application Reconfiguration Tool) is a framework for the automatic configuration of systems and applications. The tool implements an application configuration workflow that resorts to the similarities between configuration files (i.e., patterns such as parameters, comments and blocks) to allow a syntax independent manipulation and transformation of system and application configuration files.Without compromising its generality, SmART targets virtualized IT infrastructures, configuring virtual appliances and its applications. SmART reduces the time required to (re)configure a set of applications by automating time-consuming steps of the process, independently of the nature of the application to be configured. Industrial experimentation and utilization of SmART show that the framework is able to correctly transform a large amount of configuration files into a generic syntax and back to their original syntax. They also show that the elapsed time in that process is adequate to what would be expected of an interactive tool. SmART is currently being integrated into the VIRTU bundle, whose trial version is available for download from the projects web page.
Dias, Ricardo, João Seco, and João Louren{\c c}o. "
Snapshot Isolation Anomalies Detection in Software Transactional Memory."
InForum 2010: Proceedings of InForum Simpósio de Informática. Universidade do Minho, 2010.
AbstractSome performance issues of transactional memory are caused by unnecessary abort situations where non serializable and yet non conflicting transactions are scheduled to execute concurrently. Smartly relaxing the isolation properties of transactions may overcome these issues and attain considerable performance improvements. However, it is known that relaxing isolation restrictions may lead to runtime anomalies. In some situations, like database management systems, developers may choose that compromise, hence avoiding anomalies explicitly. Memory transactions protect the state of the program, therefore execution anomalies may have more severe consequences in the semantics of programs. So, the compromise between a relaxed isolation strategy and enforcing the necessary program correctness is harder to setup. The solution we devise is to statically analyse programs to detect the kind of anomalies that emerge under snapshot isolation. Our approach allows a compiler to either warn the developer about the possible snapshot isolation anomalies in a given program, or possibly inform automatic correctness strategies to ensure Serializability.
Drasovean, R. a, R. b Monteiro, and M. c Cherif. "
Structure and morphology study of cobalt oxide doped silica nanocomposite films."
AIP Conference Proceedings. Vol. 1203. 2010. 483-488.
AbstractCobalt oxide doped silica films were synthesized by a dip-coating technique. Initial compounds were cobalt acetate Co(CH3COO)2-4H 2O and tetraethoxysilane Si(OC2H5)4. The chemical composition was studied by X-ray diffraction and UV-Vis spectroscopy. The morphology analyses were carried out by means of atomic force microscopy. The average diameter of cobalt oxide dispersed particles increases with the molar ratio Co:Si and with the aging time of the initial colloidal solution. © 2009 American Institute of Physics.
Pinto, R. M., R. I. Olariu, J. Lameiras, F. T. Martins, A. A. Dias, G. J. Langley, P. Rodrigues, C. D. Maycock, J. P. Santos, M. F. Duarte, M. T. Fernandez, and M. L. Costa. "
Study of selected benzyl azides by UV photoelectron spectroscopy and mass spectrometry."
Journal of Molecular Structure. 980 (2010): 163-171.
AbstractBenzyl azide and the three methylbenzyl azides were synthesized and characterized by mass spectrometry (MS) and ultraviolet photoelectron spectroscopy (UVPES). The electron ionization fragmentation mechanisms for benzyl azide and their methyl derivatives were studied by accurate mass measurements and linked scans at constant B/E. For benzyl azide, in order to clarify the fragmentation mechanism, labelling experiments were performed. From the mass analysis of methylbenzyl azides isomers it was possible to differentiate the isomers ortho, meta and para. The abundance and nature of the ions resulting from the molecular ion fragmentation, for the three distinct isomers of substituted benzyl azides, were rationalized in terms of the electronic properties of the substituent. Concerning the para-isomer, IRC calculations were performed at UHF/6-31G(d) level. The photoionization study of benzyl azide, with He(I) radiation, revealed five bands in the 8-21 eV ionization energies region. From every photoelectron spectrum of methylbenzyl azides isomers it has been identified seven bands, on the same range as the benzyl azide. Interpretation of the photoelectron spectra was accomplished applying Koopmans' theorem to the SCF orbital energies obtained at HF/6-311++G(d, p) level.
Neagu, E. R., C. J. Dias, M. C. Lanca, R. Igreja, P. Inacio, J. N. Marat-Mendes, and Ieee. "
The Study of the Molecular Movements in the Range of Glass Transition by the Final Thermally Stimulated Discharge Current Technique."
Proceedings of the 2010 Ieee International Conference on Solid Dielectrics. IEEE International Conference on Solid Dielectrics-ICSD. 2010.
AbstractThe electrical methods used to study the molecular movements are based on the movement of the dipoles under DC or AC electric field. We have proposed recently a combined measuring protocol to analyze charge injection/extraction, transport, trapping and de-trapping in polar or non-polar dielectric materials. The method is used here to analyze the molecular movements in polyimide in the temperature range from 293 to 572 K. A strong relaxation was observed around 402 K and a very weak relaxation around 345 K. This is the beta relaxation which is quite complex. As concern the behavior at high temperatures, above the beta relaxation, a high peak was observed that shifts continuously to higher temperatures as the charging temperature and/or the charging field increase. The maximum current of the peak increases and the temperature corresponding to the maximum current increases as the charging temperature and/or the charging field increase, given a direct observation of the so called cross-over effect related to current decay for sample charged at high fields and/or high temperatures.
Duarte, A. R. C., J. F. Mano, and R. L. Reis {Preparation of chitosan scaffolds for tissue engineering using supercritical fluid technology}. Vol. 636-637. Materials Science Forum, 636-637., 2010.
AbstractThe aim of this study was to evaluate the possibility of preparing chitosan porous matrixes using supercritical fluid technology. Supercritical immersion precipitation technique was used to prepare scaffolds of a natural biocompatible polymer, chitosan, for tissue engineering purposes. The physicochemical and biological properties of chitosan make it an excellent material for the preparation of drug delivery systems and for the development of new biomedical applications in many fields from skin to bone or cartilage. Immersion precipitation experiments were carried out at different operational conditions in order to optimize the processing method. The effect of different organic solvents on the morphology of the scaffolds was assessed. Additionally, different parameters that influence the process were tested and the effect of the processing variables such as polymer concentration, temperature and pressure in the chitosan scaffold morphology, porosity and interconnectivity was evaluated by micro computed tomography. The preparation of a highly porous and interconnected structure of a natural material, chitosan, using a clean and environmentally friendly technology constitutes a new processing technology for the preparation of scaffolds for tissue engineering using these materials. © (2010) Trans Tech Publications.