Export 3109 results:
Sort by: Author Title Type [ Year  (Desc)]
2020
Peres, R. S., X. Jia, J. Lee, K. Sun, A. W. Colombo, and J. Barata. "Industrial Artificial Intelligence in Industry 4.0 - Systematic Review, Challenges and Outlook." IEEE Access. 8 (2020): 220121-220139. Abstract
n/a
Penalva, H., M. I. Gomes, F. Caeiro, and M. M. Neves. "Lehmer{'}s mean-of-order-p extreme value index estimation: a simulation study and applications." Journal of Applied Statistics. 47 (2020): 2825-2845. Abstract
n/a
Pereira, J. C. R., A. M. P. de Jesus, J. Xavier, J. A. F. O. Correia, L. Susmel, and A. A. Fernandes. "Low and ultra-low-cycle fatigue behavior of X52 piping steel based on theory of critical distances." International Journal of Fatigue (2020): 105482. AbstractWebsite

The cyclic failure observed in structural components such as pipelines subjected to extreme loading conditions highlights some limitations concerning the application of existing fatigue damage models. The evaluation and prediction of this type of failure in these steel components under large-scale plastic yielding associated with high levels of stress triaxiality are not sufficiently known nor explored. This fatigue domain is conventionally called ultra-low-cycle fatigue (ULCF) and damage features are representative of both low-cycle fatigue (LCF) and monotonic ductile fracture. Thus, in order to understand the ULCF damage mechanisms both monotonic and LCF tests are required to get representative bounding damage information to model the material damage behaviour under such extreme loading conditions. This paper aims at exploring the Theory of Critical Distances (TCD) in the LCF and ULCF fatigue regimes, including the application of the point, line and area methods. The application of the TCD theories has not been explored so far in the ULCF fatigue regimes, despite its promising results in the LCF and high-cycle fatigue. An experimental program was carried out on several specimens’ geometries made of X52 piping steel. In detail, smooth plane specimens and notched plane specimens were cyclic loaded under tension/compression loading in order to obtain fatigue lives within the range of 101-104 cycles. In addition, cyclic bending tests on notched plane specimens were also incorporated in this study. Finite element simulations of all small-scale tests were conducted allowing to derive elastoplastic stress/strain fields along the potential crack paths. The numerical data were subjected to a post-processing in order to find characteristic lengths that can be treated as a fatigue property according to the TCD. A unified strain-life relation is proposed for the X52 piping steel together with a characteristic material length, consisting of a practical relation for pipeline strain-based design under extreme cyclic loading conditions.

Santos, F. A., H. Rebelo, M. Coutinho, L. S. Sutherland, C. Cismasiu, I. Farina, and F. Fraternali. "Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA vs. PETg." Composite Structures (2020): 113128. AbstractWebsite

This work studies the low-velocity impact response of 3D-printed layered structures made of thermoplastic materials (PLA and PETg), which form sacrificial claddings for impact protection. The analyzed structures are composed of crushable cellular cores placed in between terminal stiffening plates. The cores tessellate either honeycomb hexagonal unit cells, or hexagonal cells with re-entrant corners, with the latter exhibiting auxetic response. The given results highlight that the examined PETg protectors exhibit higher energy dissipation ratios and lower restitution coefficients, as compared to PLA structures that have the same geometry. It is concluded that PETg qualifies as an useful material for the fabrication of effective impact protection gear through ordinary, low-cost 3D printers.

Reboredo, {Fernando Henrique}, A. Barbosa, {Maria Manuela} Silva, {Maria Luisa} Carvalho, {José Paulo} Santos, {Maria Fernanda} Pessoa, Fernando Lidon, {José C. } Ramalho, and Mauro Guerra. "Mineral Content of Food Supplements of Plant Origin, by Energy Dispersive X-ray Fluorescence: A Risk Assessment." Exposure and Health. 12 (2020): 917-927. Abstract

The aim of this study is to evaluate the elemental composition of six food supplements of plant origin, commonly sold in the Portuguese market, by energy dispersive X-ray fluorescence. The presence of arsenic in all the Maca, Ashwagandha, Camu-Camu and Hemp protein samples (except the generic form) is a reason of concern due to the long-term effects of As mainly in its inorganic form. Thus, great caution must be taken on some food supplements, particularly the cases of Moringa from Egypt and Yellow/Xpresso Maca, whose inorganic As concentrations are in line with the upper bound concentration for the 95th dietary exposure according to the European Food Safety Authority which is 0.64 μg/kg bw/day. In what regards Hemp protein, if the supplier’s daily intake recommendation (30 g) is followed, values as high as 1.75 μg/kg bw/day of inorganic As will be consumed, which are dangerously above the upper bound. In this case this specific supplement lot should be removed from the market. Also the consumption of Hemp protein leads to a daily intake of Mn above the Daily Reference Intake (DRI) and Adequate Intakes (AIs) for adults. The contamination of Goji berries by Pb is a reason for concern—organic berries contained 11.3 μg/g while berries derived from conventional agriculture 11.6 μg/g, leading to daily intake doses of 315.3 μg and 324.8 μg, respectively, if the recommended daily intake of 28 g is followed. Our findings point out to an inadequacy of the recommended intakes by the supplier vis a vis the concentrations observed, greatly increasing the risk for public health.

Ribeiro, Diana O., Aldino Viegas, Virgínia M. R. Pires, João Medeiros-Silva, Pedro Bule, Wengang Chai, Filipa Marcelo, Carlos M. G. A. Fontes, Eurico J. Cabrita, Angelina S. Palma, and Ana Luísa Carvalho. "Molecular basis for the preferential recognition of β1,3-1,4-glucans by the family 11 carbohydrate-binding module from Clostridium thermocellum." The FEBS Journal. 287 (2020): 2723-2743. AbstractWebsite

Understanding the specific molecular interactions between proteins and β1,3-1,4-mixed-linked d-glucans is fundamental to harvest the full biological and biotechnological potential of these carbohydrates and of proteins that specifically recognize them. The family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11) is known for its binding preference for β1,3-1,4-mixed-linked over β1,4-linked glucans. Despite the growing industrial interest of this protein for the biotransformation of lignocellulosic biomass, the molecular determinants of its ligand specificity are not well defined. In this report, a combined approach of methodologies was used to unravel, at a molecular level, the ligand recognition of CtCBM11. The analysis of the interaction by carbohydrate microarrays and NMR and the crystal structures of CtCBM11 bound to β1,3-1,4-linked glucose oligosaccharides showed that both the chain length and the position of the β1,3-linkage are important for recognition, and identified the tetrasaccharide Glcβ1,4Glcβ1,4Glcβ1,3Glc sequence as a minimum epitope required for binding. The structural data, along with site-directed mutagenesis and ITC studies, demonstrated the specificity of CtCBM11 for the twisted conformation of β1,3-1,4-mixed-linked glucans. This is mediated by a conformation–selection mechanism of the ligand in the binding cleft through CH-π stacking and a hydrogen bonding network, which is dependent not only on ligand chain length, but also on the presence of a β1,3-linkage at the reducing end and at specific positions along the β1,4-linked glucan chain. The understanding of the detailed mechanism by which CtCBM11 can distinguish between linear and mixed-linked β-glucans strengthens its exploitation for the design of new biomolecules with improved capabilities and applications in health and agriculture. Database Structural data are available in the Protein Data Bank under the accession codes 6R3M and 6R31.

Ghosh, Indranil, Filipe Marques, and Subrata Chakraborty. "A new bivariate Poisson distribution via conditional specification: properties and applications." Journal of Applied Statistics (2020): 1-23. Abstract
n/a
Coolen, Frank PA, and Filipe J. Marques. "Nonparametric Predictive Inference for Test Reproducibility by Sampling Future Data Orderings." Journal of Statistical Theory and Practice. 14 (2020): 1-22. Abstract
n/a
Sanchez-Sobrado, O., MJ Mendes, T. Mateus, J. Costa, D. Nunes, H. Aguas, E. Fortunato, and R. Martins. "Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cells." Solar Energy. 196 (2020): 92-98. AbstractWebsite
n/a
Gomes, M. I., F. Caeiro, F. Figueiredo, L. Henriques-Rodrigues, and D. Pestana. "Reduced-bias and partially reduced-bias mean-of-order-p value-at-risk estimation: a Monte-Carlo comparison and an application." Journal of Statistical Computation and Simulation. 90 (2020): 1735-1752. Abstract
n/a
Isufi, B., I. Cismasiu, R. Marreiros, A. Pinho Ramos, and V. Lúcio. "Role of punching shear reinforcement in the seismic performance of flat slab frames." Engineering Structures. 207 (2020). AbstractWebsite
n/a
Cismaşiu, C., F. P. A. Santos, R. A. D. S. Perdigão, V. M. S. Bernardo, P. X. Candeias, A. R. Carvalho, and L. M. C. Guerreiro. "Seismic Vulnerability Assessment of a RC Pedestrian Crossing." Journal of Earthquake Engineering. 24 (2020): 727-744. AbstractWebsite
n/a
Centeno, P., M. F. Alexandre, M. Chapa, JV Pinto, J. Deuermeier, T. Mateus, E. Fortunato, R. Martins, H. Águas, and MJ Mendes. "Self-Cleaned Photonic-Enhanced Solar Cells with Nanostructured Parylene-C." Advanced Materials Interfaces. 7 (2020). AbstractWebsite
n/a
Franco, N., C. Chastre, and H. Biscaia. "Strengthening RC Beams Using Stainless Steel Continuous Reinforcement Embedded at Ends." Journal of Structural Engineering (United States). 146 (2020). AbstractWebsite

An innovative system for the flexural strengthening of RC structures designated continuous reinforcement embedded at ends (CREatE) is presented in this research work. The main characteristics and procedures for the application of this new strengthening technique were described. To evaluate the performance and efficiency of this technique, a set of RC T-beams was subjected to a four-point bending test setup. The reference RC T-beam was not strengthened; all other RC T-beams were strengthened with postinstalled stainless steel bars. Different application arrangements and different amounts of reinforcement were considered, and the CREatE technique was tested under monotonic and cyclic loading histories. The tests were modeled using the nonlinear finite-element method (FEM) to predict the performance of the RC T-beams, which allowed analyzing, in detail and with good agreement with the experiments, the influence of the CREatE technique on the (1) strains developed in the concrete, (2) cracking patterns, and (3) strains developed in the stirrups. Apart from the expected increases in the flexural stiffness and load-bearing capacity of the T-beams, the results showed that the use of the CREatE technique led to higher ductility indexes in the displacement compared with traditional techniques. Moreover, with the CREatE technique, premature debonding of the reinforcement material from the concrete tensioned surface - commonly observed in externally bonded reinforcement (EBR) strengthening systems - was eliminated. © 2020 American Society of Civil Engineers.

Outis, Mani, Vitor Rosa, César AT Laia, João Carlos Lima, Sónia Barroso, Ana Luísa Carvalho, Maria José Calhorda, and Teresa Avilés. "Synthesis, Crystal Structure, and DFT Study of Two New Dinuclear Copper(I) Complexes Bearing Ar-BIAN Ligands Functionalized with NO2 Groups." European Journal of Inorganic Chemistry. 2020 (2020): 2900-2911. AbstractWebsite

{Two new bis(aryl-imino)-acenaphthene, Ar-BIAN (Ar = 2

Marques, FJ, and CA Coelho. "Testing simultaneously different covariance block diagonal structures–the multi-sample case." Journal of Applied Statistics (2020): 1-20. Abstract
n/a
Coutinho, Mathilda L., João Pedro Veiga, Maria Filomena Macedo, and Ana Zélia Miller. "Testing the Feasibility of Titanium Dioxide Sol-Gel Coatings on Portuguese Glazed Tiles to Prevent Biological Colonization." Coatings. 10 (2020): 1169. Abstract
n/a
Machado, Jorge, Patr{\'ıcia Miguel Carvalho, Ana Félix, Delfin Doutel, José Paulo Santos, Maria Luisa Carvalho, and Sofia Pessanha. "{Accuracy improvement in XRF analysis for the quantification of elements ranging from tenths to thousands $μ$g g$^{-1}$ in human tissues using different matrix reference materials}." Journal of Analytical Atomic Spectrometry. 35 (2020): 2920-2927. AbstractWebsite

Journal of Analytical Atomic Spectrometry (2020), 35, 2920-2927, doi:10.1039/D0JA00307G

Centeno, Pedro, Miguel F. Alexandre, Manuel Chapa, Joana V. Pinto, Jonas Deuermeier, Tiago Mateus, Elvira Fortunato, Rodrigo Martins, Hugo Águas, and Manuel J. Mendes. "{Self-Cleaned Photonic-Enhanced Solar Cells with Nanostructured Parylene-C}." 2000264 (2020): 1-9. Abstract

Abstract Photonic front-coatings with self-cleaning properties are presented as means to enhance the efficiency and outdoor performance of thin-film solar cells, via optical enhancement while simultaneously minimizing soiling-related losses. This is achieved by structuring parylene-C transparent encapsulants using a low-cost and highly-scalable colloidal-lithography methodology. As a result, superhydrophobic surfaces with broadband light-trapping properties are developed. The optimized parylene coatings show remarkably high water contact angles of up to 165.6° and extremely low adhesion, allowing effective surface self-cleaning. The controlled nano/micro-structuring of the surface features also generates strong anti-reflection and light scattering effects, corroborated by numeric electromagnetic modeling, which lead to pronounced photocurrent enhancement along the UV?vis?IR range. The impact of these photonic-structured encapsulants is demonstrated on nanocrystalline silicon solar cells, that show short-circuit current density gains of up to 23.6%, relative to planar reference cells. Furthermore, the improvement of the devices' angular response enables an enhancement of up to 35.2% in the average daily power generation.

2019
Chastre, Carlos, and Paulo Mendonça 2nd International Conference on Building Materials and Materials Engineering - ICBMM 2018. Vol. 278. Lisbon, Portugal: MATEC Web of Conferences, 2019. Abstract

n/a

Torres-González, Arturo, Alfonso Alcántara, Vasco Sampaio, Jesús Capitán, Bruno Guerreiro, Rita Cunha, and Anibal Ollero. "Distributed Mission Execution for Aerial Cinematography with Multiple Drones." Workshop on Signal Processing Computer vision and Deep Learning for Autonomous Systems, EUSIPCO2019. 2019. Abstract
n/a
Cunha, Rita, Miguel Malaca, Vasco Sampaio, Bruno Guerreiro, Paraskevi Nousi, Ioannis Mademlis, Anastasios Tefas, and Ioannis Pitas. "Gimbal Control for Vision-based Target Tracking." Workshop on Signal Processing Computer vision and Deep Learning for Autonomous Systems, EUSIPCO2019. 2019. Abstract
n/a
Mademlis, Ioannis, Arturo Torres-González, Jesús Capitán, Rita Cunha, Bruno Guerreiro, Alberto Messina, Fulvio Negro, Cedric Le Barz, Tiago Gonçalves, and Anastasios Tefas. "A Multiple-UAV Software Architecture for Autonomous Media Production." Workshop on Signal Processing Computer vision and Deep Learning for Autonomous Systems, EUSIPCO2019. 2019. Abstract
n/a
Agra, Agostinho, Jorge Orestes Cerdeira, and Cristina Requejo. "A computational comparison of compact {MILP} formulations for the zero forcing number." Discrete Applied Mathematics. 269 (2019): 169-183. AbstractWebsite
n/a
Cerdeira, Jorge Orestes, Carlos Iglésias, and Pedro C. Silva. "The train frequency compatibility problem." Discrete Applied Mathematics. 269 (2019): 18-26. AbstractWebsite
n/a