Kacsuk, Péter, José C. Cunha, Gábor Dózsa, João Louren{\c c}o, Tibor Fadgyas, and Tiago Antão. "
A graphical development and debugging environment for parallel programs."
Parallel Comput.. 22 (1997): 1747-1770.
AbstractTo provide high-level graphical support for PVM (Parallel Virtual Machine) based program development, a complex programming environment (GRADE) is being developed. GRADE currently provides tools to construct, execute, debug, monitor and visualise message-passing parallel programs. It offers high-level graphical programming abstraction mechanism to construct parallel applications by introducing a new graphical language called GRAPNEL. GRADE also provides the programmer with the same graphical user interface during the program design and debugging stages. A distributed debugging engine (DDBG) assists the user in debugging GRAPNEL programs on distributed memory computer architectures. Tape/PVM and PROVE support the performance monitoring and visualization of parallel programs developed in the GRADE environment.
vanWesenbeeck, MPN, JB Klaassens, U. vonStockhausen, AMD Anciola, and SS Valtchev. "
A multiple-switch high-voltage DC-DC converter."
IEEE Transactions on Industrial Electronics. IE-44 (1997): 780-787.
AbstractSeries connection of power devices has evolved into a mature technique and is widely applied in HV dc systems. Static and dynamic voltage balance is ensured by shunting individual devices with dissipative snubbers. The snubber losses become pronounced for increased operating frequencies and adversely affect power density. Capacitive snubbers do not exhibit these disadvantages, but they require a zero-voltage switching mode. Super-resonant power converters facilitate the principle of zero-voltage switching. A high-voltage dc-dc power converter with multiple series-connected devices is proposed. It allows the application of nondissipating snubbers to assist the voltage sharing between the multiple series-connected devices and lowers turn-off losses. Simulation results obtained with a circuit simulator are validated in an experimental converter operating with two series-connected devices. The behavior of the series connection is examined for MOSFET's and insulated gate bipolar transistors (IGBT's) by both experimental work with a 2-kW prototype and computer simulation. Applications can be found in traction and heavy industry, where the soft-switching converter is directly powered from a high-voltage source.