Duro, N., R. Santos, J. M. Lourenço, H. Paulino, and J. Martins,
"Open Virtualization Framework for Testing Ground Systems",
Proceedings of the 8th Workshop on Parallel and Distributed Systems (PADTAD'10), New York, NY, USA, ACM, pp. 67–73, 2010.
AbstractThe recent developments in virtualization change completely the panorama of the Hardware/OS deployment. New bottlenecks arise in the deployment of application stacks, where IT industry will spend most of the time to assure automation. VIRTU tool aims at managing, configuring and testing distributed ground applications of space systems on a virtualized environment, based on open tools and cross virtualization support. This tool is a spin-off of previous activities performed by the European Space Operations Center (ESOC) and thus it covers the original needs from the ground data systems infrastructure division of the European Space Agency. VIRTU is a testing oriented solution. Its ability to group several virtual machines in an assembly provides the means to easily deploy a full testing infrastructure, including the client/server relationships. The possibility of making on-demand request of the testing infrastructure will provide some infrastructure optimizations, specially having in mind that ESA maintains Ground Control software of various missions, and each mission cam potentially have a different set of System baselines and last up to 15 years. The matrix array of supported system combinations is therefore enormous and any improvement on the process provides substantial benefits to ESA, by reducing the effort and schedule of each maintenance activity. The ESOC's case study focuses on the development and validation activities of infrastructure or mission Ground Systems solutions. The Ground Systems solutions are typically composed of distributed systems that could take advantage of virtualized environments for testing purposes. Virtualization is used as way to optimize maintenance for tasks such as testing new releases and patches, test different system's configurations and replicate tests. The main benefits identified are related to deployment test environment and the possibility to have on-demand infrastructure.
Paulino, H., J. A. Martins, J. M. Lourenço, and N. Duro,
"SmART: An Application Reconfiguration Framework",
Complex Systems Design & Management: Springer Berlin Heidelberg, pp. 73–84, 2010.
AbstractSmART (Smart Application Reconfiguration Tool) is a framework for the automatic configuration of systems and applications. The tool implements an application configuration workflow that resorts to the similarities between configuration files (i.e., patterns such as parameters, comments and blocks) to allow a syntax independent manipulation and transformation of system and application configuration files.Without compromising its generality, SmART targets virtualized IT infrastructures, configuring virtual appliances and its applications. SmART reduces the time required to (re)configure a set of applications by automating time-consuming steps of the process, independently of the nature of the application to be configured. Industrial experimentation and utilization of SmART show that the framework is able to correctly transform a large amount of configuration files into a generic syntax and back to their original syntax. They also show that the elapsed time in that process is adequate to what would be expected of an interactive tool. SmART is currently being integrated into the VIRTU bundle, whose trial version is available for download from the projects web page.