
Open Virtualization Framework for

Testing Ground Systems

Nuno Duro

Evolve Space Solutions

Est. Paço do Lumiar, Lt 1

Lisboa, Portugal

nuno.duro@evolve.pt

Rui Santos

European Space Agency
Robert Bosch Strasse 5

Darmstadt, Germany

rui.santos@esa.int

João Lourenço, Hervé Paulino, João Martins

CITI – Departamento de Informática

Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa

{joao.lourenco, herve} @di.fct.unl.pt

citanul86@gmail.com

ABSTRACT
The recent developments in virtualization change completely the
panorama of the Hardware/OS deployment. New bottlenecks arise
in the deployment of application stacks, where IT industry will
spend most of the time to assure automation. VIRTU tool aims at
managing, configuring and testing distributed ground applications
of space systems on a virtualized environment, based on open
tools and cross virtualization support. This tool is a spin-­off of
previous activities performed by the European Space Operations
Center (ESOC) and thus it covers the original needs from the
ground data systems infrastructure division of the European Space
Agency. VIRTU is a testing oriented solution. Its ability to group
several virtual machines in an assembly provides the means to
easily deploy a full testing infrastructure, including the cli-­
ent/server relationships

The possibility of making on-­demand request of the testing infra-­
structure will provide some infrastructure optimizations, specially
having in mind that ESA maintains Ground Control software of
various missions, and each mission cam potentially have a differ-­
ent set of System baselines and last up to 15 years. The matrix
array of supported system combinations is therefore enormous and
any improvement on the process provides substantial benefits to
ESA, by reducing the effort and schedule of each maintenance
activity.

The ESOC’s case study focuses on the development and valida-­
tion activities of infrastructure or mission Ground Systems solu-­
tions. The Ground Systems solutions are typically composed of
distributed systems that could take advantage of virtualized envi-­
ronments for testing purposes. Virtualization is used as way to
optimize maintenance for tasks such as testing new releases and
patches, test different system’s configurations and replicate tests.
The main benefits identified are related to deployment test envi-­
ronment and the possibility to have on-­demand infrastructure.

Categories and Subject Descriptors

C.3 [Special-­Purpose and Application-­Based Systems]: Real-­
time and embedded systems;; D.4.5 [Reliability]: Fault-­tolerance;;
D.4.7 [Organization and Design]: Real-­time systems and em-­
bedded systems;; J.7 [Computers in Other Systems]: Command
and control.

General Terms
Management, Performance, Reliability, Experimentation, Secu-­
rity, Standardization.

Keywords
Virtualization, Infrastructures, Applications, Management, Con-­
figuration, Deployment.

1. INTRODUCTION
ESOC is responsible for performing all operations regarding the
satellite control for all ESA missions. This means managing a
complex array of Systems along with their independent develop-­
ment lifecycles. In order to find a common approach (as far as
possible) for ESA missions, a ground data system Infrastructure is
currently in place to take care of all aspects related with the de-­
velopment and maintenance of most of these Systems.

The development and validation of the aforementioned ground
data system infrastructure at ESOC clearly exposed the limitations
of the traditional approach of having several distinct physical
workstations available for executing the applications and many
activities. The main observed issues were:

 The proliferation of software baselines and respective
hardware resources;;

 The low level of utilization of each individual available
resource (e.g., CPU usage average per year);;

 The fast paced OS market lifecycle compared with mis-­
sion/infrastructure schedule and longevity requirements;;
and

 The duration of system test validation and deployment,
due to environment and system complexity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PADTAD’10 July 13, Trento, Italy.
Copyright 2010 ACM 978-­1-­4503-­0136-­7/10/07 ...$10.00.

67

These are crosscutting issues, spanning areas as distinct as the
aforementioned space systems, but also telecommunications and
services, among others, and have, thus, become one of the major
concerns of IT industries. A study conducted by ESOC has con-
cluded that the market trend to address them is virtualization.

Virtualization techniques have been around for quite some time;
however the IT massification only occurred recently with the ad-
vent of low cost multi-core processors, hardware virtualization
support and a wider Operating Systems' support. Nonetheless,
ESOC’s study has demonstrated that the critical requirements for
virtualizing its ground system-testing infrastructure, such as
strong isolation between virtual machines, and high system avail-
ability and performance are covered/supported by the main virtu-
alization vendors.

However, new bottlenecks have arisen in installation and configu-
ration of application stacks, where it is foreseen that IT industry
will spend most of time and money to achieve automatic machine
deployment. How to improve the virtual machine duplication,
configuration and deployment (along with lifecycle management)
capabilities of the existing tools to meet the requirements remains
a challenge.

By anticipating these application deployment and automation
issues the European Space Agency (ESA), in a joint consultancy
with Evolve Space Solutions, has been developing for the last two
years a custom solution to automate this process, since no product
was identified and available at that time. Evolve has re-structured
this solution into the VIRTU framework [12] (see Figure 1) in
partnership with ESA, HP Labs, Universidade Nova de Lisboa
and Universidade de Coimbra.

Figure 1. The VIRTU Framework

The framework focuses on ESA needs for testing and developing
distributed software, including ground systems, considering that
ESA maintains various missions during long periods (up to 15
years), and each mission requires several ground centralized and
distributed applications, where sometimes a dedicated machine
per application is needed with heterogeneous hardware/operating
system. VIRTU now constitutes a viable alternative to ESA
ground systems maintenance on this new age of computer avail-
ability and green IT.
The contribution of this paper is thus on the proposal of a frame-
work for managing, configuring and deploying Virtual Machines
instantiated which use a specified OS and a set of Application
Stacks. This framework has a strong potential for application to
different industry activities and, in this paper, we describe its ap-

plication to setting up the testing environments in the European
Space Agency (Ground Systems).

The remaining of this paper is structured as follows: the following
section presents the main features of the VIRTU framework; Sec-
tion 3 describes how VIRTU can provide a virtualized infrastruc-
ture for the testing and developing applications in complex dis-
tributed environments, namely in the context of ESA’s Ground
Systems; Section 4 compares VIRTU with the current state-of-
the-art in the management of application stacks on virtualized
environments, and finally; Section 5 presents our conclusions and
paths for future work.

2. THE VIRTU FRAMEWORK
The VIRTU framework aims at managing and configuring appli-
cation stacks on a virtualized environment. It introduces an inno-
vative approach for configuring and automatically deploying fully
configured virtual machines with applications, independently of
the virtualization provider.
VIRTU enables the handling of various software configurations,
such as applications, operating systems and networks. It general-
izes the configuration of customer applications based on open
standards and tools, and supports cross virtualization environ-
ments, namely the VMware and Xen hypervisors. The actual con-
figuration is based on open script programming, backed-up by a
smart editor that automatically acquires and manages configura-
tions.

Virtual machines in VIRTU are constructed by assembling Build-
ing Blocks (operating systems and applications) whose configura-
tion is specified in special purpose files, named Publication Files
(Figure 2).

Figure 2. Configuring and managing applications

The tool provides three main functionalities to be used by final
users and system administrators:

• Assembly Configuration – allows the specification of
virtual machine configurations based on Building
Blocks and configuration blocks (the Publication Files).
An assembly contains one or more virtual machines de-
pending on the aforementioned configuration blocks.

• Assembly Request and Deployment – provides on-
demand requests of fully configured virtual machines.

• Assembly Usage – allows users to connect, share, and
manage the lifecycle of deployed virtual machines.

68

2.1 Deploying Virtual Machines
This section provides a more in-depth description of the three
VIRTU functionalities previously introduced, establishing a work-
flow for the deploying a virtual machine using VIRTU.

2.1.1 Assembly Configuration
The configuration of Assemblies is a task performed by the sys-
tem administrator. It involves:

1. Defining of Building Blocks and their associated Publi-
cation Files and Installation Scripts (Publication
Scripts), and;

2. Assembling of these blocks into ready to be deployed
Virtual Machines, named Assemblies.

The initial step is to create the necessary Building Blocks com-
posed of Operating Systems (Linux or Windows) and applica-
tions.
These blocks are then associated to Publication Files specifying
the configuration variables (e.g., mode of operation of the applica-
tion) and the Publication Scripts to install a given Building Block.
The configuration process can be automated by using the Smart
Application Reconfiguration Tool (SmART) for the automatic
acquisition of new Building Block configurations (more on this in
Section 2.2).

The second step consists on building the Assemblies by adding
Virtual Machines and defining the Building Blocks to be de-
ployed. A Virtual Machine is composed of multiple building
blocks. The most common strategy when defining such building
blocks is to have one for the OS and another for the specific ap-
plication. This process is assisted by the UI depicted in Figure 3.

Figure 3. Assembly Configuration UI

2.1.2 Assembling Request and Deployment
The final user may request the deployment of instances of previ-
ously configured assemblies, by resorting to the UI depicted in
Figure 4. The request is subject to administrator approval, and
causes the target assembly to be instantiated and automatically
deployed, according to a predefined order and rules.

Figure 4. Assembly Request UI

2.1.3 Assembly Usage
The Assembly Usage functionality enables the final user to con-
nect to Virtual Machines and run his applications remotely from
the tool (see Figure 5) or using a third party remote connection
(VNC third-party support). The users can also share instances
with other users and manage the Virtual Machine’s lifecycle.

Figure 5. Assembly Instance Usage

In addition to the user interfaces, the VIRTU provides some ex-
ternal interfaces that can be used to ease the integration with a
pre-established infrastructure.

The VIRTU tool mainly targets the use cases of testing and devel-
oping applications in complex distributed environment, in order to
replicate the testing set-up environments.

2.2 Application Reconfiguration
As described in Section 2.1, application configuration in VIRTU
is decoupled from assembling, allowing many-to-many relation-
ships. Thus, a virtual machine is only configured when deployed.
The Publication Files specifying the configurations of the assem-
bled Building Blocks are retrieved from a pre-determined data-
base and handled by a script, to perform the desired configura-
tions before the system is on-line.

69

SmART [2], a Smart Application Reconfiguration Tool, is a
framework for the automatic configuration of applications. With-
out compromising its generality, SmART targets virtualized IT
infrastructures, configuring virtual machines and their applica-
tions. It implements an application configuration workflow, re-
sorting to the similarities between configuration files (i.e., patterns
like parameters, comments, blocks, etc.), to recognize the syntax
and, to some extent, the semantic of a configuration file, and con-
vert it into a generic (application independent) intermediate repre-
sentation. Configuration transformation scripts may then be exe-
cuted over this intermediate representation, with or without ad-
ministrator support, to generate a customized configuration. This
representation is then reconverted to reflect the alterations in the
original application dependent syntax. SmART reduces the time
required to (re)configure a set of applications, by automating
time-consuming steps of the process, independently of the nature
of the application to be configured.

2.2.1 Classes of Application Configurations Files
We performed a comprehensive analysis of the configuration files
of well known and widely used open source applications, such as
Apache, Eclipse, MySQL, PostgresSQL, GNUstep, and Mantis.
We limited our study to text-based configurations files for now.
As anticipated, the concrete syntax of configuration files tends to
differ among applications, but effectively resorts to a limited
number of concepts. In fact, only four distinct concepts where
identified in all of the inspected files:

• Parameter assignment – set the value of an application
configuration parameter;

• Block – group configuration settings;

• Comment – explain the purpose of one or more lines of
the file; and

• Directive – denote commands or other directives, such
as the inclusion of a file.

Our analysis also focused on the actual representation used by the
applications to express these concepts, and although no standard
exists, we observed that some formats, such as INI [3] and XML
[4], have emerged as community standards. Consequently, we
were able to classify all studied applications under the following
three main categories:

• INI-based: The syntax follows the INI format or similar.
Blocks are explicitly initialized, but are implicitly ter-
minated by the beginning of the next block. Assign-
ments are of the form parameter separator value, where
value can be either a single value, a list of values, or
even nothing. Block-nesting is not allowed.

• XML-based: This category encompasses syntaxes a little
more permissive than pure XML, and addresses applica-
tions that store their configurations as XML variants.
This category has a broader scope than the INI-based,
since explicitly initialized and terminated blocks can
nest other blocks.

• Block-based: This category addresses a wider scope of
formats on which are delimited by symmetric symbols,
such as { } and ().

Fro our analysis, we concluded that systematic and automatic
application configuration can be achieved by transforming the
application configuration files into a generic representation, de-
tached from the application specifics. This representation can then

be modified systemically, and once altered be converted back to
the original syntax, reflecting the applied modifications.

2.2.2 The Application Reconfiguration Process
The reconfiguration process using SmART is divided in three
stages, as illustrated in Figure 6:

1. Transform a given configuration file from its origi-
nal representation to a generic (XML-based) for-
mat;

2. Modify the XML file to reflect the desired configu-
ration; and

3. Translate back the modified XML file to the origi-
nal representation for the configuration file.

Figure 6. Application Reconfiguration Process using SmART

The stages are independent, requiring only the use of the same
intermediate representation. Such design enhances flexibility, for
instance: file modification can be performed manually (e.g., a
graphic tool that displays all the editable settings) or automatically
(e.g., a script); several executions of stage 2 can be performed
over a single output of stage 1, and; stage 3 can convert a file back
to this original representation with no extra information besides
the one included in its input file.

2.2.3 Integration of SmART in VIRTU
SmART integrates with VIRTU at two levels. The Original to
Generic Syntax Converter is used by the administrator to trans-
pose one or more configuration files into a building block publica-
tion file, in order to define the block’s default configuration and
user editable parameters. The Generic to Original Syntax Con-
verter is used in the virtual machine’s on-boot configuration proc-
ess. It converts the building block’s publication file back into its
original format, so that the configuration script may carry its
work.

Dynamic reconfigurations pf running virtual machines can also be
achieved by having a daemon on every running virtual machine
listening for reconfiguration requests. This process is equivalent
to the on-boot configuration process, with the exception that the
target application may have to be restarted before the new con-
figuration can be applied.

2.3 VIRTU License, Usage and Availability
VIRTU is distributed under a dual-licensing model, open-source
(LGPL v3) and commercial, known as Quid-Pro-Quo business
model. The open-source package will be free-to-use and Evolve’s

70

main goal is to develop a widespread user community and enable
its adoption as a standard for virtual machine application stack
deployment. The expectation is that this community will provide
in return free testing, free enhancements and most importantly
free marketing. While maintaining the solution in open source
assures a wider dissemination and acceptance, private source will
assure the competitive advantages where customers wishing to use
commercially, alter or bundle the VIRTU product must purchase
it through a commercial license. The final business solution fol-
lows a balance between open source and closed source software.

3. A CASE STUDY: ESA
The ESA case study targets the use cases of testing and develop-
ing applications in complex distributed environment. The possibil-
ity to automatically make multiple deployments is quite interest-
ing for maintenance of Generic System Infrastructure testing and
Mission testing. The Virtualization tools are integrated in the gen-
eral ESA maintenance process as described in figure 7.

Figure 7 - ESA Maintenance Process with VIRTU

The process described starts with the release of software products
(OS, Product, Patches) in binary format (installer and application).
Virtualization is used then to setup the environment and testing is
performed on the virtual machines instance requested by the de-
velopers until the product is discontinued.

3.1 Infrastructure Initial Use Case
The predecessor version of VIRTU (GoVI project [5]) was started
in 2006 and deployed in 2009 at ESOC for use within the ground
systems infrastructure division. The GOVI connector provides a
centralized and common access to Virtual machines depending on
user privileges (one user only has access to his own Virtual Ma-
chines or the ones shared with him by other users). It also allows
the users to perform Virtual machine/Assembly requests, which
will be later authorized and deployed by the GOVI administrator.
The GOVI key functionalities have been kept and improved in
VIRTU.

On this first phase, the typical scenarios considered were the de-
ployment and testing of new systems and patches to existing sys-
tems on a virtualized environment composed by one or more vir-
tual machines (partially implementation of step 1 and 3 of Figure
7). This accelerates and improves the software acceptance process
by ensuring a clean environment baseline is used for each activity.
Another important scenario is the use and deployment of common
Virtual Assemblies, following an OS ESOC specific baseline, for
each Project in order to harmonize the use of Virtualization (par-
tially implementation of step 2 of Figure 7).

In both scenarios, the portability provided by the creation of refer-
ence assemblies allows for a much wider range of end-to-end
System test cases (where a “black box” Virtual assembly can be
used without a huge amount of effort).

It needs to be pointed out that in this first stage the process of
configuring new assemblies is still manual and requires a rela-
tively high level of knowledge on the system to be installed.
However once the Assembly is available the process of creating
multiple instances of this reference assembly is automated (step 6
of Figure 7). The next logical step is therefore to improve the tool
in order to perform the System deployment and configuration
(which will lead in the end to a new reference assembly) based on
a limited number of input parameters.

3.2 Infrastructure Use Case
The extension provided with VIRTU is a consolidation of its
predecessor, GOVI project, providing better customization and
flexibility. It is more focused on the request and deployment of
multiple (possibly distributed) systems and testing multiple con-
figurations on the generic ground systems infrastructure.

The ESA Ground System products are organized in blocks to be
installed on different testing assemblies as presented in Figure 8.
Some of these blocks have to be manually created and costumed
for the first time (step 1, 2 and 3 of Figure 7). However once
available they can be re-used by different Assemblies and even
different instances of the same Assembly (step 4 of Figure 7).
This allows for a much faster and uniform system test integration
and deployment. It also ensure that a pre validated block (applica-
tion) is not going to be misused introducing another level of com-
plexity and origin of problems.

Figure 8. VIRTU Use Case evolution in OPS-GI

71

The figure presents several VIRTU blocks configured with vari-
ous GS products, namely SCOS R5.2 and 5.4, Egos User Desktop,
Packet Archive (DARC), GSTVi and Telemetry and Telecom-
mand System (TMTCS). Together with these blocks are also con-
figured Off-The-Shelf third-parties (e.g., My SQL) represented in
the figure as VIRTU Block.

All these blocks have to be created and configured for the first
time following a manual process or assisted by the SmART tool.
However once available they can be re-used by different Assem-
blies and even different instances of the same Assembly. This
allows for a much faster and uniform system test integration and
deployment. It also ensure that a pre validated block (application)
is not going to be misused introducing another level of complexity
and origin of problems.

The possibility of making on-demand request of the testing infra-
structure (step 5 of Figure 7) will provide some infrastructure
optimizations, specially having in mind that ESA maintains
ground control software of various missions potentially on differ-
ent System baselines for long periods. The matrix array of sup-
ported system combinations is therefore enormous and any im-
provement on the process provides substantial benefits to ESA (by
reducing the effort and schedule of each maintenance activity).

The use case also takes into account the scenario where there is no
building block or Assembly for a particular system (very common
at the initial stage of the development). In this case, a “raw” As-
sembly containing only the required OS block and third party
software is deployed. The system is then deployed, configured,
sometimes patched (step 7 of Figure 7) and validated. Once com-
pleted, a new building block is created and used as a reference for
any future activities (step 6 of Figure 7).
Another use case is the deployment of products in multiple Virtual
Machines assuring the setup communications between them. A
common example is depicted in figure 8 deploying the SCOS
Testing Assembly products in two virtual machines that needs to
communicate between each other: one with the Mission Control
System (SCOS-2000) and the second with the mission spacecraft
model integrated in GSTVi (SIMSAT and Simulation Models).

Figure 9. Typical GS testing scenario

In fact, this end-to-end testing may results from two Assembly
Instances previously approved and promoted as reference base-
lines (step 6 of Figure 7).

Another benefit of the blocks approach can be seen on future
study/prototype activities where different block combinations can
be tested without much effort. The typical example would be to

deploy a SCOS-2000 block into a different baseline OS and eva-
luate the potential impacts of a future migration activity.

3.3 Mission Use Case
VIRTU can be used to support testing on the Ground Sys-

tem’s Missions (this means the “blocks” concept described before
is still valid for the mission validation approach). Conceptually
there are not many differences between the Infrastructure Use
case and the Mission Use case. The various product versions are
also organized in blocks as depicted in Figure 10.

Figure 10. VIRTU Use Case on OPS-GD

The figure illustrates two mission scenarios (Cryosat-2 and
Swarm):

• VIRTU Blocks could be configured with several prod-
uct versions (e.g., Swarm MCS 1.0 and Swarm
MCS 1.1);

• Testing results comparison between product versions
baselines may be performed.

Each VIRTU Block can be used on several assemblies, where
each assembly has its own testing purpose, for instance:

• Cryosat-2 TMTCS Testing Assembly is used for valida-
tions of MCS and TMTCS using GSTVi;

• Cryosat-2 SVT Assembly is used with MCS and the si-
mulator for System Validation Testing.

In both infrastructure and mission maintenance, virtualization is
used as way to optimize maintenance of ESA ground systems
infrastructure for tasks such as testing new releases and patches,
test different system’s configurations and replicate tests. The main
benefits identified are related to test scenarios deployment and the
possibility to have on-demand infrastructure.

4. RELATED WORK
Being VIRTU a virtualization framework that provides the sys-
temic management and configuration of application stacks on
virtualized environments, this section addresses related work in
both the virtualization and the systemic configuration fields.

Regarding virtualization, VIRTU constitutes a step forward from
the current proposals, such as VMWare [6], Xen [7], VirtualBox

72

[8], and so on. In fact, VIRTU is not a virtualization provider.
Instead it provides for configuring and automatically deploying
fully configured virtual machines, independently of the virtualiza-
tion provider. Currently, VIRTU supports VMWare and Xen im-
ages, but, with the general adoption of the Open Virtualization
Format (OVF) standard [9], compatibility will no longer be an
issue.

Moreover, VIRTU is a testing oriented solution. Its ability to
group several virtual machines in an assembly provides the means
to easily deploy a full testing infrastructure, including the cli-
ent/server relationships.

Regarding application configuration and deployment, to the best
of our knowledge, VIRTU’s SmART is the first to exploit the
similarities among configuration files to allow for automatic, ven-
dor-independent and on-the-fly application reconfiguration. Thin
Crust [10] and SmartFrog [11] are the projects that more closely
related to our work, but there is no effort on automating the con-
figuration process.

Thin Crust is an open-source set of tools and meta-data for the
creation of virtual appliances. It features three key components:
Appliance Operating System (AOS), Appliance Creation Tool
(ACT) and Appliance Configuration Engine (ACE). The AOS is a
minimal OS built from a Fedora Kickstart file, which can be cut
down to just the required packages to run an appliance. SmartFrog
is a framework for the creation of configuration-based systems. Its
objective is to make the design, deployment and management of
distributed component-based systems simpler and more robust. It
defines a language to describe component configurations and a
runtime environment to activate and manage those components.

5. CONCLUSIONS
We described VIRTU, a framework for configuration, deployment
and management of the life cycle of Virtual Machines. VIRTU
has a wide range of potential uses in industry, but has been driven
mainly by the needs of the Ground Systems sector of the Euro-
pean Space Agency, who have contributed to the requirements
analysis and validation of the framework.

By resorting to virtualization, VIRTU makes possible the on-
demand request of the testing infrastructure and allows infrastruc-
ture optimizations when dealing with a large number of combina-
tions of hardware, operating system and application stacks. It also
substantially improves the deployment of end-to-end test facilities
and demonstration scenarios. We describe two use cases in ESA,
where the matrix array of supported system combinations is
enormous.

VIRTU process can bring great advantages when deploying the
systems several times like the Ground System testing performed
by ESA

• Manual deployments are effort intensive;

• Preparation of the deployment process in VIRTU in-
volves a certain level of customization (creating the

scripts) but is of the same order of magnitude as per-
forming the setup manually

VIRTU deployment is a clear advantage when you need to repeat
the same deployment tasks on a higher level of magnitude. Natu-
rally the first VIRTU setups take a bit more configuration effort
but become an advantage in terms of effort and reliability when
various setup tests need to be performed.

Possible extensions on testing may allow to fully configuring
specific blocks for performing regression testing the Ground Sys-
tems. GUI Testing framework block is typical example that can be
use to automate regression system testing.

The product may also be used on other customers where the use
cases are also driven by the need of reducing costs on system
deployment and configuration.

ACKNOWLEDGMENTS
This work was partially funded by project VIRTU of ADI (con-
tract ADI/3500/VIRTU) and by FCT MCTES via the CITI re-
search centre and the Byzantium research project PTDC/EIA/
74325/2006.

6. REFERENCES
[1] Technical Note 6: Final Report - Consolidation of Ground

Segment Using Virtual Machines, Technical Report UC-
ESA/2007.10.05/1 2007.10.05, 2007

[2] Paulino H., Martins J.A., Lourenço J., and Duro N., SmART:
An Application Reconfiguration Framework, In Proceedings
of Complex Systems Design & Management (CSDM) 2010,
Lecture Notes in Computational Science and Engineering,
Springer-Verlag, to appear

[3] Cloanto, Cloanto implementation of INI file format
http://www.cloanto/specs/ini/, 2009

[4] W3C, Extensible Markup Language (XML).
http://www.w3.org/XML/

[5] Use of Virtualisation Techniques for Ground Data Systems,
SpaceOps, 2008

[6] VMware, VMware Virtualization Software for Desktops,
Servers & Virtual Machines for a Private Cloud,
http://www.vmware.com/

[7] Xen, Xen Hypervisor, http://www.xen.org/
[8] Oracle, VirtualBox, http://www.virtualbox.org/

[9] Distributed Management Task Force, Inc., Open Virtualiza-
tion Format Specification (version 1.0.0), DSP0243, 2009

[10] Thin Crust: Thin crust main page. http://www.thincrust.net/

[11] Goldsack P. et al: The SmartFrog configuration management
framework. SIGOPS Oper. Syst. Rev. 43(1), 16–25, 2009

[12] VIRTU, http://www.evolve.pt/virtu

73

