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Abstract. Multi-threaded programs allow one to achieve better performance by
doing a lot of work in parallel using multiple threads. Such parallel programs
often contain code blocks that a thread must execute atomically, i.e., with no in-
terference from the other threads of the program. Failing to execute these code
blocks atomically leads to errors known as atomicity violations. However, fre-
quently it not obvious to tell when a piece of code should be executed atomically,
especially when that piece of code contains calls to some third-party library func-
tions, about which the programmer has little or no knowledge at all. One so-
lution to this problem is to associate a contract with such a library, telling the
programmer how the library functions should be used, and then check whether
the contract is indeed respected. For contract validation, static approaches have
been proposed, with known limitations on precision and scalability. In this paper,
we propose a dynamic method for contract validation, which is more precise and
scalable than static approaches.

1 Introduction
With multi-core processors present in all the newest computers, multi-threaded pro-
grams are becoming increasingly common. However, multi-threaded programs require
proper synchronisation to restrict the thread interleavings and make the program pro-
duce correct results. Failing to do so often leads to various critical errors, which occur
under some very specific timing scenarios only, and standard testing and debugging
techniques are less effective or even useless for their detection.

Atomicity violations are a class of errors which result from an incorrect definition
of the scope of an atomic region. Such errors are usually hard to localise and diagnose,
which becomes even harder when using (third-party) software libraries where it is un-
known to the programmer how to form the atomic regions correctly when accessing the
library. Even new synchronisation techniques, such as transactional memories, designed
to ease the process of writing concurrent programs, do not entirely avoid this problem
and suffer from atomicity violations as well [3].

One way to address the problem of proper atomicity is to associate a contract with
each program module/library and then check whether the contract is indeed respected.
In fact, the notion of contract is, in general, not restricted to concurrent programs. In
the general case, a contract [8] regulates the use of methods of an object by specifying
a set of pre-conditions the program must meet before calling the object methods. For
the particular case of concurrent programs, Sousa et al. proposed in [10] the concept
of the so-called contracts for concurrency. A contract for concurrency contains a set of
clauses where each clause defines a (finite) set of sequences of method calls that must
be executed atomically whenever they are executed on the same object. Contract clauses



may be written by the software module/library developer or inferred automatically from
the program (based on its typical usage patterns) [10].

In this paper, assuming that the appropriate contracts for concurrency have been
obtained, we propose a method for dynamically verifying that such contracts are re-
spected at program run time. In particular, our method belongs among the so-called
lockset-based dynamic analyses whose classic example is the Eraser algorithm for data
race detection [9] and whose common feature is that they track sets of locks that are held
by various threads and used for various synchronization purposes. The tracked lock sets
are used to extrapolate the synchronization behaviour seen in the witnessed test runs,
allowing one to warn about possible errors even when they do not directly appear in
the witnessed test runs. We have implemented our approach in a prototype tool, and we
present some encouraging experimental results obtained with our implementation.

2 Related Work

A notion of contract was first introduced by Meyer [8] in 1992 as a sequence of tasks
(commands) with defined pre- and post-conditions. If this sequence was executed with-
out meeting these conditions, the contract was violated. Contracts in the form of regular
expressions were used to specify protocols for accessing objects in sequential [1] as
well as concurrent scenarios [2, 7, 10]. Hurlin in [7] proposes a technique to validate
the correctness of contracts by checking contracts on a set of artificially generated pro-
grams that use a particular object. Both Demeyer in [2] and Sousa in [10] propose to
use a static approach to address the contract validation.

The static approaches of [2, 10] can formally prove that no contract violation is
possible. For that, however, they assume that properly handled contracts must appear
in code blocks declared as atomic (with the atomicity assured by the run-time support).
If a different way of guarding the contracts is used, a false alarm is issued. Moreover,
the approaches scale to relatively small programs only. For more complex programs,
one has to restrict the analysis to program fragments, e.g., individual methods, in order
to achieve a reasonable performance. This leads to a loss of precision as contracts may
span across several methods and thus be missed by the analysis.

Another problem with the static approach is related to the fact that contracts for
concurrency are required to operate atomically only when all the involved method calls
operate on the same object. This is a natural requirement since the atomic execution
is critical only when working with data elements that are mutually related, which is
assumed to be reflected in that they are stored within one object. However, static vali-
dation does not have precise information on which objects the methods are called on.
Hence, calls of methods on different objects are mixed together, leading to possible false
alarms. Classic alias and escape analyses can be used to infer this information from the
source code of the program, but these analyses provide only approximate information
and may still lead to false alarms.

Our dynamic approach of contract validation avoids the above false alarms since it
has precise run-time information about the objects that particular methods are executed
on. Moreover, it also scales quite well. On the other hand, despite the lockset-based
method that we use extrapolates to some degree the behaviour of the witnessed test runs,
our approach can miss some contract violations that do not happen in the witnessed
test runs nor they can be deduced from the locking patterns used in these traces. In
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order to minimize the number of possibly missed contract violations, one can combine
our approach with noise injection techniques [6] that maximize the number of thread
interleavings witnessed in a set of test runs.

3 Contracts for Concurrency
A contract for concurrency [10] (or simply contract herein) is a protocol for accessing
the public services of a module, i.e., the methods of its public API, in a concurrent
setting. Each module shall have its own contract, which contains one or more sequences
of tasks (methods). The condition to be met here is that the sequences of methods must
be executed atomically whenever executed on the same object.

Formally, let Σc be a set of all public method names (API) of a module (or library).
A contract is a set S of clauses where each clause s ∈ S is a star-free regular expression
overΣc. A contract is violated if any of the sequences represented by the contract is not
executed atomically when executed on the same object o, meaning that it is interleaved
with an execution of some method from Σc on the object o.

4 Dynamic Validation of Contracts
In order to detect atomicity violations in more complex programs and to reduce the
number of false alarms, we propose a dynamic approach to check whether a contract
is violated or not. Our dynamic validation looks for contract violations based on con-
crete program executions. Possible violations not witnessed during the execution of the
program may be missed, but all of the methods encountered during the execution are
taken into account, and so contract violations caused by method calls from all over the
program are detected. Since all of the threads are running and all objects are known
when the program is executing, we know precisely whether all of the methods called in
a sequence use the same object, and we do not report any false alarms due to mixing
calls on different objects as is common in static analysis.

Since we look for contract violations based on concrete executions, we can avoid
some false alarms, but on the other hand, we can miss some errors. In order to minimise
this possibility, we employ one of the dynamic analysis techniques—namely, the lock
sets [9]—to extrapolate the actually witnessed behaviour and hence detect possible con-
tract violations even when they were not actually witnessed. Moreover, we utilise noise
injection techniques [6] to enforce synchronisation scenarios, which normally appear
only rarely, leading to behaviours (and possibly contract violations) that would not be
covered by extrapolation of the common synchronisation scenarios only.

4.1 Detection of Contracts
In order to validate a contract, we first need to detect the sequences it contains in the
execution of a program. To do that, we encode each contract, i.e., all of its sequences,
as a single finite state automaton. As each clause of the contract represents a regular
expression, we use standard methods for transforming (star-free) regular expressions3

into finite automata to perform the conversion and then merge all these automata into
a single one. The transitions of the automaton represent method calls and the accepting
states represent situations where a contract sequence was detected.

3 Star-free regular expressions are used in the static contract validation approach [10]. We can,
however, easily generalize our approach to general regular expressions.

3



Each thread manages a list of finite state automata instances which represent the
currently encountered incomplete contract sequences. Whenever a method m ∈ Σc

is encountered, we try to advance each of these instances using the method m. If we
cannot advance the instance, the contract sequence is invalid and we discard it. If we
successfully advanced the instance to the next state, call it q, we check if q is an accept-
ing state. If yes, a contract sequence is detected; if not, we leave the instance in q and
go on. Moreover, we check if we can advance any of the finite state automata from their
starting state using the method m. If yes, then the beginning of another contract se-
quence was detected and we create a new instance of the automaton which will monitor
the execution of this contract sequence to check if it can be accepted or not.

4.2 Checking the Atomicity Condition

When a contract sequence is detected, the next step is to check if the atomicity condi-
tion is met, i.e., if the program ensures that all methods of this contract sequence are
executed atomically. The static approach does this by checking if all of the methods of
the detected contract sequence are enclosed in code blocks declared as atomic, which
can be done by analysing the source code of the program.

We propose a lockset-based method, inspired by [9], to perform these checks which
is more suited for dynamic analysis. This method checks if at least one lock is held
during the execution of a contract sequence by monitoring the lock acquisitions and
releases during the execution of a contract sequence. If this condition is not satisfied,
i.e., no locks are held throughout the execution, then the contract is being violated.

The method works online, i.e., it performs the contract validation during the execu-
tion of a program, and is based on the analysis state σ = (A,H,R) where:

– A : T → 2L records the set of locks acquired by a thread.
– H : T × S → 2L records the set of locks held by a thread when a contract

sequence starts.
– R : T ×S → 2L records the set of locks released by a thread during the execution

of a contract sequence.

[CONTRACT SEQUENCE START]
H ′ := Ht[s := At]
R′ := Rt[s := ∅]
(A,H,R)⇒seq_start(t,s) (A,H ′, R′)

[CONTRACT SEQUENCE END]
if Ht(s) \Rt(s) = ∅ then ERROR

(A,H,R)⇒seq_end(t,s) (A,H,R)

[LOCK ACQUIRED]
A′ := A[t := At ∪ {m}]
(A,H,R)⇒acq(t,m) (A′, H,R)

[LOCK RELEASED]
∀s ∈ S : R′ := Rt[s := Rt(s) ∪ {m}]

(A,H,R)⇒rel(t,m) (A,H,R′)

Fig. 1: Analysis rules.

In the initial analysis state, all sets
of locks are empty, reflecting that at the
beginning of the execution, no locks are
held by any thread, i.e., σ0 = (∅, ∅, ∅).
Fig. 1 shows rules according to which the
analysis state is updated for each opera-
tion of the target program.

The rule [CONTRACT SEQUENCE
START] records that a thread t is start-
ing an execution of a contract sequence s
by remembering the locks which are cur-
rently held by the thread. It also clears the
set of locks released by the thread as no
locks could have been released yet.

The rule [CONTRACT SEQUENCE
END] records that a contract sequence s
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Thread 1

find()

erase()

fork()

Thread 2

find()
erase()

H \ R = ∅

H \ R = ∅

(a) An atomically executed contract
reported as errorneous.

Thread 1

lock(m)

find()

erase()

unlock(m)

Thread 2

lock(n)

find()
erase()

unlock(n)

H = {m}

H = {n}

H \ R = {m}

H \ R = {n}

(b) A not reported contract violation.

Fig. 2: Examples of situations where the contract validation fails.

was detected in a thread t and checks the atomicity condition by comparing the set of
locks held when the contract sequence started its execution with the set of locks released
during its execution. If at least one lock was held all the time the contract sequence was
executed, the contract is valid, and no error is issued. If all locks held at the beginning
of the execution of the contract sequence were released before its execution finished,
a contract violation is reported.

The rule [LOCK ACQUIRED] records that a thread t acquired a lock m, and it up-
dates the set of locks currently acquired by this thread. Finally, the rule [LOCK RE-
LEASED] records that a thread t released a lock m, and it updates the set of locks
released by the thread for each contract sequence currently executed by this thread.

4.3 Discussion of the Proposed Approach
The above method may produce both false positives (i.e., false alarms) as well as false
negatives. False positives may be caused by the fact that not guarding an execution of
a contract sequence with a single lock throughout its entire duration does not mean that
it will not be executed atomically. Take the situation shown in Fig. 2(a) as an example.
Not a single one of the contract sequences is guarded by a lock, yet there is no contract
violation as the synchronisation ensures that the contract sequence in Thread 1 is
always executed before the contract sequence in Thread 2. Therefore there is no
interference between these two contract sequences, and hence no contract violation.
Yet the method reports both of the contract sequences being violated.

False negatives may happen since holding a lock when executing a contract se-
quence does not always ensure that no other thread interferes with it. Take the situation
in Fig. 2(b) as an example. The executions of the contract sequence in both Thread 1
and Thread 2 are guarded by a lock. However, these locks are different and thus the
execution of the contract sequence in Thread 1may be interleaved with the execution
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of the contract sequence in Thread 2, violating the contract sequence in Thread 1.
Yet the method does not report any error.

To solve the above problems, we need to take into account thread interleavings.
When guarding the same contract sequence with two different locks in two different
threads, we should issue an error only when these two threads may interleave each
other. Conversely, when a contract sequence is not guarded by a lock, we should report
an error only when this thread may be interleaved by another thread executing the same
contract sequence. When using the static approach, this information is hard to obtain as
one would need to infer it from the source code of the program where the scheduling of
threads is unknown. On the other hand, the dynamic approach actually sees the concrete
thread interleavings, and so it is easier to get the needed information. Unfortunately,
the lockset method does not work with it in any way. Moreover, incorporating this
information into the lockset method would be counterproductive as it would kill the
extrapolation which increases chances to detect errors. A way to go here seems to be
a use of dynamic analysis based on the happens-before relation as used, e.g., in the
GoldiLock data race detector [5], which is a part of our future work.

5 Experiments
This section presents an experimental comparison of the proposed dynamic validation
of contracts with the static approach of [10]. To compare the approaches, we imple-
mented the method described in Section 4 as a plug-in for the IBM Concurrency Testing
Tool (ConTest) [4]. The ConTest infrastructure provides a fully automatic Java byte-
code instrumentation and a listeners architecture that facilitated the implementation of
the proposed method as well as execution and dynamic analysis of the benchmarks.

The comparison of the static and dynamic approaches is done using a subset of
the small benchmark programs which were previously used to evaluate the static ap-
proach [10], namely, the Account, Allocate Vector, Arithmetic DB, Jigsaw, Store, and
Vector fail test cases. All these benchmark programs had to be slightly modified in order
to allow us to execute them and use ConTest to analyse their runs. Namely, we did the
following modifications by hand: (1) test arguments were provided if missing; (2) infi-
nite loops (which are not a problem for the static approach, but cannot be present during
a dynamic analysis) were transformed to finite loops with a small number of iterations
to avoid infinite executions; (3) exceptions generation and handling (commented out
due to limits of the static approach) were uncommented; (4) the Atomic annotations
preferred by the static approach were turned back to synchronized blocks; and (5)
all assertions and correctness checks already present in the test cases were extended to
send notifications to our ConTest plug-in. The dynamic analysis tests were executed on
a Linux machine with an i5-4200M CPU (i.e., comparable with the machine used to
evaluate the static approach in [10]), running Linux 3.16, and OpenJDK 1.6 JVM.

Table 1 summarises results of the comparison between our dynamic approach and
the static approach of [10]. The table is divided into three sections. In the leftmost part,
basic characteristics of the benchmark programs are provided. In particular, the test case
name, the number of effective lines of the original Java code (without our modifications,
which added only a few extra lines of code), and the number of contract clauses for the
benchmark program as manually identified by the authors of the static approach.

The middle part of Table 1 characterizes results of the static analysis obtained
in [10]. Namely, the average analysis duration in seconds is provided with the num-
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Table 1: An experimental comparison of static and dynamic contract validation.
Program Static analysis Dynamic analysis

Benchmark LOC
Contract
Clauses

Duration
(sec.)

CFG
Nodes

Detected
Violations

Duration
(sec.)

Detected
Violations

Failed
Assertions

Account 68 2 0,041 158 2 0,011 2 0,96
Allocate Vector 167 1 0,120 882 1 0,099 1 0,00
Arithmetic DB 325 2 0,272 2256 2 0,010 2 0,06
Jigsaw 147 1 0,044 125 1 0,009 1 0,44
Store 769 1 0,090 559 1 0,303 1 1,00
VectorFail 100 2 0,048 244 2 0,009 2 0,09

ber of control flow graph (CFG) nodes generated and processed. Finally, the number of
detected violations of contract clauses for each benchmark program is shown.

The rightmost part of the table shows the average results (from 1000 test executions)
obtained with our dynamic approach. In particular, the average execution time of the
instrumented test in seconds is provided, followed by the average number of detected
violations of contract clauses. Finally, the average ratio of failed assertions (usually
implemented as conditions checking memory consistency) provided by the authors of
the tests is reported. The standard deviations of the execution times as well as failed
assertions were quite low. The standard deviation of the number of violated contract
was zero (i.e., the algorithm always detected all the violations).

Concerning both the considered static as well as dynamic approach, there are two
interesting aspects we would like to emphasize: (i) the ability of both approaches to
detect contract violations; and (ii) the very low execution time taken by both approaches
(of course, a further evaluation on larger test cases remains to be done).

In both approaches, all violations were always correctly reported. Such a good result
of the dynamic approach depends on the quality of the test that executes the problem-
atic part of the code and on the ability of the lockset approach to extrapolate other be-
haviours from the witnessed execution, and therefore to detect possible violations even
from executions where the problem did not occur. This can, in particular, be demon-
strated on the Allocate Vector, Arithmetic DB, and VectorFail benchmark programs
where the assertion-based detection reported the problem in less than 10 % of execu-
tions while the dynamic approach always detected a possible violation.

Let us now get back to the time consumed by the analyses. In both cases, the analysis
itself took less than one second for the considered simple test programs. However, there
was a significant difference in the overhead of the underlying infrastructures. The ini-
tialisation of the static approach within the Soot analysis environment [10] took nearly
40 seconds for each benchmark. The dynamic approach was much faster. The bytecode
instrumentation took about 0.5 seconds. The slowdown of the test execution was within
5 % because only the method entry and lock operation events were instrumented (i.e.,
most of the code was executed with no instrumentation and hence no overhead).

6 Conclusion
We presented a method for dynamic validation of contracts in concurrent code. When
compared with previously proposed static approaches, our approach can suppress some
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of the false alarms produced by these approaches, and it is also more scalable. Since
we build on observing concrete runs, our approach can miss some errors that would
not be missed by static analysis. To detect as many contract violations as possible, our
approach employs a lockset-based extrapolation of the synchronization behaviour ob-
served in performed test runs, which allows the method to warn about possible contract
violations even when they were not seen in a concrete execution. Moreover, noise in-
jection may be used to increase the number of observed thread interleavings, and hence
chances to see interleavings containing a contract violation or at least symptoms that
such a violation is possible.

The extrapolation we use can suffer from both false positives and negatives due to
the fact that the lockset method used does not utilise any information about thread inter-
leavings. In order to solve this problem, we plan to use extrapolation methods based on
the happens-before relations, which do reflect thread interleavings. Another interesting
subject for future work is then generalization of the notion of contracts (e.g., by consid-
ering full regular expressions), exploiting the fact that such generalizations seem to be
much easier in the context of dynamic analysis.
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