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Abstract. We discuss debugging prototypes that can easily support
new functionalities, depending on the requirements of high-level com-
putational models, and allowing a coherent integration with other tools
in a software engineering environment. Concerning the first aspect, we
propose a framework that identifies two distinct levels of functionalities
that should be supported by a parallel and distributed debugger using: a
process and thread-level, and a coordination level concerning sets of pro-
cesses or threads. An incremental approach is used to effectively develop
prototypes that support both functionalities. Concerning the second as-
pect, we discuss how the interfacing with other tools has influenced the
design of a process-level debugging interface (PDBG) and a distributed
monitoring and control layer called (DAMS).

1 Introduction

Debugging is centered on two main aspects, namely the observation of the com-
putation state, and the need to exercise some modification and control upon
the computation, to identify and correct program bugs. While the state of a se-
quential computation can easily be determined and controlled by a conventional,
process-level debugger, the same is not true of the state of a distributed com-
putation. Solutions to this problem must be incorporated into a distributed de-
bugger, requiring a mechanism to evaluate local and global predicates, which in-
volve state variables in multiple processes. Concerning control of the distributed
computation, actions such as step-by-step execution and breakpoint marking
must be applied to individual processes, as in conventional debuggers, and to
sets of distributed processes. Debugging is more difficult for concurrent mod-
els because of non-deterministic executions, due to the arbitrary interleaving of
multiple concurrent activities, and their dynamic interactions. Although several
deterministic re-execution techniques have been proposed supporting cyclic and
interactive debugging of concurrent programs [LMCT78], they only solve a part of
the problem. This is due to the large complexity of real concurrent applications,
with many processes and many dynamic interactions, which implies a very large
space of alternative computation paths that must be tried during debugging. In



fact, deterministic re-execution has a limitation because it only allows us to try
each recorded trace in turn. As it is obviously impossible to exhaustively search
all of those paths, we must assure that we are recording and re-executing the
“right” traces. The identification of the desired traces that should be inspected
under re-execution must be left to the user under the guidance of a testing tool.
We argue that a debugger should always be complemented with a “companion”
program analysis and testing tool. Although testing is beyond the scope of this
paper [LCH"97] it puts an important requirement on the design of a debugger,
because it demands specific mechanisms for tool interfacing [CLA96b]. This also
applies to the integration of a debugger and a visualization tool, or of a debugger
and a graphical editor for a visual language [KCDT98].

Tool Integration. Recently, much research has concentrated on software en-
gineering environments for parallel and distributed applications. It is recognized
the need of a coherent integration among all the tools and user interfaces in such
environments. In the context of research projects [ST94] on software engineer-
ing for parallel processing, our team has developed a debugger for distributed
applications (DDBG [CLA96a]). One of its basic requirements was the ability to
integrate easily with tools from other partners, such as the GRED tool for the de-
velopment of programs in the GRAPNEL visual programming language [KCD198],
and the STEPS testing tool [LCH*97]. DDBG provides the following functionalities:
a bi-directional interaction where the client issues inspection/control commands
to the debugger, and gets the replies; a mapping of user symbolic process names
to system-level names; command-line (text-oriented), and graphical user inter-
faces; support for multiple simultaneous client processes.

Heterogeneity. Multiple components of a distributed application may be
programmed in different languages and may spawn through a variety of different
machines, operating systems and communication protocols. Besides this hetero-
geneity, we should be able to reuse, interconnect, and simultaneous control, dis-
tinct pre-existing component level debuggers (i.e. process- or thread-level). This
is important as such debuggers are typically highly system dependent, and their
development is time consuming. The DDBG prototype supported the debugging
of distributed C/PVM programs but its internal architecture and implementation
would not allow easy integration of new aspects. In this paper we propose a
new debugging support framework with new features for tool integration, and
we describe a new architecture and implementation of a process-level debugger.

Organization of the Paper. First we propose a framework for parallel and
distributed debugging. Section 3 describes a process-level debugging interface.
Section 4 presents a distributed monitoring architecture (DAMS) and Section 5
shows its use to implement the PDBG debugger.

2 A Framework to Support Parallel and Distributed
Debugging

A computational model defines processes, threads, their groupings, and interac-
tions. This suggests two levels of debugging functionalities:



1. The component-level. This level defines state inspection and control of each
individual component (a process or a thread).

2. The coordination-level. This involves state inspection and control of sets of
components, and their interactions.

This view allows the incremental design of the debugger, i.e. by first develop-
ing component-level functionalities, and then coordination level functionalities.
While the former are dependent on the component-level debuggers, the latter
should be adaptable according to the user needs. Our goal is to define a basic set
of mechanisms and low-level functionalities that allow us to build such coordi-
nation level services. So in the first step we built the two bottom layers (levels 1
and 2) in our abstract debugging architecture:

1. A layer supporting monitoring and control functionalities. (DAMS).
2. A layer supporting component-level functionalities acting upon processes and
threads, and supported as Service Modules in DAMS.

The development of coordination-level functionalities concerns the establish-
ing global views and global actions, defined in terms of sets of processes and sets
of threads. As these high-level functionalities are very close to the semantics of
the distributed application, we provide only the basic mechanisms to support
the user-level definition of such global views and actions. In the next incremen-
tal step we build the upper levels (layers 3 and 4) of the abstract debugging
architecture:

3. Coordination-level basic mechanisms support the above high-level services.
4. Coordination-level services are defined at the user-level, as specific services
with semanticaly-dependent abstractions for each application.

The discussion of the coordination level (layers 3 and 4) is beyound the scope
of this paper. Regarding the component-level functionalities for state inspection
and control (layer 2), we describe the PDBG and the DAMS.

3 A Specification of a Process Debugging Interface (PDBG)

Client processes can access the PDBG interface in order to debug distributed
processes.

3.1 Synchronous and Asynchronous Interactions

A synchronous call interface supports the client requests. The invoker waits until
a completion status is returned by PDBG, reporting success or failure (e.g. one
cannot “Continue” a currently running or a terminated process). A synchronous
mode of operation is necessary because there are well-defined sequences of com-
mands that may be issued by a client (“controller”), so that the completion



status of each request allows its invoker to make correct assumptions concern-
ing the new state of the target (“controlled”) process. However, there is also a
strong motivation for asynchronous operations. In general, the client must be
able to catch well-defined events that occur during the execution of the tar-
get processes, e.g. when a breakpoint was placed on the target process, then a
“Continue” command was issued, and the client must be notified that the tar-
get process has reached the specified point. Such events may be the (expected
logical) result of some requests from the client process, or they may result from
(possibly unexpected) exceptional conditions that should also be inspected by
the client, e.g. the process receives a system-generated signal. Additionally, the
environment may encompass several concurrent client and target processes which
exhibit asynchronous interactions as a result of each request that is issued by
some controller process. For example, besides a controller and the target pro-
cesses, there may also be a set of “observers” e.g. when a controller issues de-
bugging commands and a graphical interface and visualization tool generates
an animated view of the ongoing computation. In order to support a coherent
integration between the debugger and the visualizer an asynchronous event no-
tification mechanism is required so that the visualization tool knows about the
evolution of the controller commands and their outcome in the target computa-
tion.

Event Handling. By default, events are not delivered to any client. By
calling an interface primitive, the invoker declares its interest in being notified
of any events of a specified type (event), related to state transitions occurring
in the processes that were explicitly identified. On event occurrence, a specified
handler is invoked in the context of the invoker.! On event notification, the
handler receives a structure as an argument which identifies the event type,
and provides general information, namely a unique (system-generated) event
identifier, plus information on each event subclass, concerning the process state,
or the name, input arguments and results of the PDBG calls.

There are two kinds of event classes: (i) events associated with target pro-
cess state transitions; (ii) events associated with client interactions with the PDBG
system. The first is required to support debugging at the process level. The asso-
ciated events are called Ezception events. The second is related to the interaction
of client tools with the debugging environment so they are associated with the
calls made to the PDBG, i.e. their requests and the PDBG replies. The associated
events are called Request events. This allows to support a coherent tool inte-
gration in a parallel software engineering environment, as well as coordination
services involving multiple concurrent tools and the debugger. Some tools can
register their interest in getting information concerning actions being performed
as a result of commands issued by other tools.

Exception events. The following process states are identified as signifi-
cant to the definition of the semantics of the PDBG primitives. If it’s detached,
the process is unknown. If it’s ready, it has been created in the ready_to_run

! The implementation of handler invocation is dependent on the programming model
being single or multi-threaded, and is not part of the PDBG interface definition.



state, under PDBG, and can start running: under PDBG, and then it can become
stopped by a PDBG command or due to the occurrence of some exception. Fi-
nally it can become terminated by a PDBG or system command, or because it
has reached the end of program.
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<Exit>
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< Signal>
interrupt()

Fig. 1. The process state transition

In the Figure 1 the state transitions are labelled by the names of the associ-
ated PDBG or system primitives, or by the associated exceptions.

Request Events. Events of the Request class are associated with the invo-
cation and completion of the PDBG primitives.

3.2 The PDBG Interface primitives

The following classes of PDBG interface primitives allow a client tool to control
and inspect multiple distributed processes:

Control of the Debugging Session: control of the debugging session; put a
process under debugger control (a new process that will execute a given
program file is created and put in the ready state, or an existent detached
process is put under debugging control in the stopped state; remove a process
from debugging control; kill a stopped process.

Process Execution: directly control of the execution path followed by an in-
dividual process, once it is known to the debugger; start running a ready
process; send a signal to stop a running process; resume the execution of a
stopped process.



Process State Inspection and Modification: inspect the state of an indi-
vidual process in well-defined points, which are reached as a result of break-
points or due to the occurrence of certain types of events (process stopped or
terminated). The information that can be accessed concerns process status,
variable and stack frame records, as well as source code information: break-
points setting and deleting; expression and variable setting and evaluation;
stack frame inspection and selection; source code information.

4 The DAMS Architecture

The goal of the DAMS architecture is to provide a basic layer for distributed
monitoring and control that clearly separates the low-level mechanisms and the
support for application-level services such as debugging, profiling, and resource
management.
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Fig. 2. The DAMS architecture

The DAMS architecture (see Figure 2) is composed as a hierarchy of processes
of the following types: the Service Manager (SM) and its Service Modules (Sml);
the Local Managers (LM), one per physical node; the Drivers (D), each associ-
ated with a Target Process.

The Service Manager . In order to keep DAMS flexible and extensible, the
Service Manager does not handle any application-specific commands. It for-
wards them instead to associated Service Modules which are actually linked
to the Service Manager at system generation time. Each Service Module en-
capsulates all the specific functionalities required by a certain service, such



as for debugging, profiling, or resource management. The Service Manager
is implemented as a multi-threaded process that has two distinct program-
ming interfaces, one facing the application and the other facing the Service
Modules:

1. The application invokes commands of a library which accesses the SM
through the Service Manager Application Programming Interface (SM
API) to access a certain service, e.g. for debugging.

2. The Service Module Application Programming Interface (Sml API) is
used by the SM process in order to communicate with the service module
responsible for activating the application-specific commands.

The application side library commands can get the identification of the avail-
able service modules, prepare request buffers, and then make calls to the ser-
vice modules. Such requests are sent as messages, through the SM API, and
are then forwarded to the corresponding module by the Service Manager.
The application side library commands can be hidden inside an user-level
library which offers a more transparent system-call based interface, e.g. for
the PDBG debugging commands.

The Local Managers, the Drivers, and the Target Processes. On each
node of the physical architecture there is a Local Manager which is respon-
sible for the communication with the Service Manager and the management
of local processes. Each Target Process that runs on a node is controlled
and monitored by an associated Driver process. Drivers are dynamically
launched and attached to target processes. They are responsible for the di-
rect enforcement of application-level commands to each associated target
process, using a well-defined protocol for handling requests and answers. In
order to support each individual application-level functionality, one must de-
fine a pair (Service Module, Driver), e.g. a debugging service module and a
debugging driver. The Local Managers are responsible for the management
of the driver processes, acting as intermediate between the Service Man-
ager and the Drivers, i.e. they forward messages coming from the SM to
the Drivers, and handle the passing of replies and event notifications to the
Service Manager. They also provide status information about the processes
on each node.

Internal DAMS Protocols. In order to keep the DAMS architecture flexible and
easily extensible, there is a well-defined set of protocols ruling the interac-
tions between the DAMS components. An architecture independent message-
passing library is used in DAMS that has been mapped onto the PVM com-
munication primitives in the implemented prototype. We are working on
portings to MPI-1 and to Windows NT. The DAMS design supports a built-
in asynchronous event mechanism from the target processes to the client
processes which is used to support PDBG events.

Heterogeneity. DAMS is neutral regarding the computational model of the tar-
get processes. All such dependences are under the responsibility of the Ser-
vice Modules and their Driver processes. As a result, DAMS offers a very ex-
pressive environment to monitor and control heterogenous application com-
ponents.



5 An Implementation of the PDBG Debugging Interface

The PDBG interface supports debugging of sequential ¢ programs, as well as
distributed programs, e.g. C/PVM and C/MPI programs, or heterogeneous pro-
grams with sequential ¢ and parallel C/PVM or C/MPI components. PDBG has
been implemented as a service in the DAMS system. The Debugging Module is
a DAMS module that provides the debugger interface and allows accessing the
target processes. For each target process of the distributed application being
debugged, there is a Debugging Driver which is responsible for inspection and
control operations. Requests to the Service Manager are forwarded to the Local
Manager in the right machine, which in turn forwards the commands to the
Debugging Driver.

An Illustration of the Execution of a PDBG Command. When a
function from the debugging library, e.g. dbg_breakset(), is invoked by a client
process, the following interactions are generated:

1. The function arguments are converted into a structure and sent as a message
to the Service Manager (SM) through the DAMS communication library.

2. The SM forwards the message to the Debugging Module (DM), where it’s
unpacked to be processed. Here, the requested service is identified and the
corresponding set of debugging driver commands is generated. For each com-
mand, the relevant data is packed into another structure and sent to the De-
bugging Driver (DD) through the SM and the Local Manager (LM), where
it’s unpacked.

3. For each request that arrives to the DD, a new set of process-level debugging
commands is generated and sent to the debugger in sequence. When all
commands are processed, the relevant data is packed into another structure
and sent back to the DM, again through the LM and the SM, where it’s
unpacked if needed.

4. The DD processes the data, if needed, and sends/forwards the (new) data
to the client debugging library. Here the data is unpacked and returned as
return parameters.

Current Status. The current status consists of a definition and implemen-
tation of the process-based functionalities (the PDBG interface). We are working
on the definition of coordination support, concerning global views and actions
(distributed replay and breakpoints, and global predicates). A prototype of PDBG
was implemented supporting the debugging of distributed processes on a hetero-
geneous LAN including PC’s with Linux, and a cluster of Alpha processors with
OSF/1, interconnected by FDDI links. The process-level debugger currently in
use is the GNU gdb which is highly portable and tested, but there is a consid-
erable drawback: the gdb is very heavy. We have measured between 60 and 90%
of the elapsed time in a command execution is spent inside gdb.



6 Conclusions and Related Work

Our current effort towards the definition of expressive and generic debugging
functionalities is focussed on the following main aspects:

1. A precisely defined low-level interface consisting of commands for component-
level state inspection and control.

2. A framework to define coordination-level services for distributed state in-
spection and control, and deterministic re-execution.

3. A specification of the mechanisms to support the interfacing of the debugger
with other tools.

4. An underlying software architecture that addresses the heterogeneity issue.

Aspects (1) and (2) concern the fundamental debugging issues of distributed
state inspection and control and deterministic re-execution. They depend upon
the basic computational model being considered, concerning processes, threads
and sets or groups of such basic entities. A most significant effort has recently
been launched with the goal of establishing a common definition of debugging
functionalities — the HPDF initiative [BFP97]. The work presented in this pa-
per is complementary of efforts such as the HPDF initiative because we expect
the HPDF debugging specifications will be easily implemented within our frame-
work. We also expect that the HPDF proposal will strongly influence the evo-
lution of our PDBG interface as well as a thread-based interface. The main goal
of our work is to promote an effective experimentation with the design and im-
plementation issues by incrementally building prototypes. So, we are following
an approach based on defining a hierarchy of debugging support abstractions
such that we can address the above issues in an incremental fashion, i.e. first at
component-level and then at a coordination-level. We have paid special atten-
tion to aspect (3) concerning tool interfacing due to our previous experience with
the development of parallel software engineering environments [CL97]. In fact,
in modern development application-oriented environments one must consider a
more general situation where multiple controller processes (client tools) as well
as multiple observer processes (also client tools) jointly operate on a set of target
processes. A basic asynchronous event notification mechanism is one important
aspect to support the required coordination of such processes. The above aspects
have influenced the design of the DAMS monitoring architecture which is also ad-
dressing the heterogeneity issue. Due to the clear separation of functionalities
in DAMS, one can simultaneous control multiple heterogeneous component-level
debuggers, i.e. process-based, single-threaded or multi-threaded. We also can
provide multiple coexisting client tools such as graphical and visualization in-
terfaces, and other services such as testing tools, that can interact with the
debugging tool [LCH'97]. Some of the aspects in DAMS can be related to another
ongoing project — the OMIS initiative [LWSB97]. However, the main distinc-
tion is that DAMS does not aim to provide a built-in monitoring interface with
a standard definition. Instead, it provides a very flexible organization to define
new services, including the definition of the user interface (through Service Mod-
ules), and the interfacing with component- or system-level services (through the



Drivers). Besides the support of distributed heterogenous debugging, DAMS is also

being used to support a resource management service to control the execution

of a heterogeneous parallel computational steering environment [MC97].
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