
A Framework to Support

Parallel and Distributed Debugging

Jos�e C� Cunha� Jo�ao Louren�co
Jo�ao Vieira� Bruno Mosc�ao� and Daniel Pereira

fjcc� jmlg�di�fct�unl�pt
fjpdv� bmoscao� dlpg�asc�di�fct�unl�pt

Departamento de Inform�atica� Faculdade de Ci�encias e Tecnologia
Universidade Nova de Lisboa� Portugal

Abstract� We discuss debugging prototypes that can easily support
new functionalities� depending on the requirements of high�level com�
putational models� and allowing a coherent integration with other tools
in a software engineering environment� Concerning the �rst aspect� we
propose a framework that identi�es two distinct levels of functionalities
that should be supported by a parallel and distributed debugger using� a
process and thread�level� and a coordination level concerning sets of pro�
cesses or threads� An incremental approach is used to e�ectively develop
prototypes that support both functionalities� Concerning the second as�
pect� we discuss how the interfacing with other tools has in	uenced the
design of a process�level debugging interface
PDBG� and a distributed
monitoring and control layer called
DAMS��

� Introduction

Debugging is centered on two main aspects� namely the observation of the com�
putation state� and the need to exercise some modi�cation and control upon
the computation� to identify and correct program bugs� While the state of a se�
quential computation can easily be determined and controlled by a conventional�
process�level debugger� the same is not true of the state of a distributed com�
putation� Solutions to this problem must be incorporated into a distributed de�
bugger� requiring a mechanism to evaluate local and global predicates� which in�
volve state variables in multiple processes� Concerning control of the distributed
computation� actions such as step�by�step execution and breakpoint marking
must be applied to individual processes� as in conventional debuggers� and to
sets of distributed processes� Debugging is more di�cult for concurrent mod�
els because of non�deterministic executions� due to the arbitrary interleaving of
multiple concurrent activities� and their dynamic interactions� Although several
deterministic re�execution techniques have been proposed supporting cyclic and
interactive debugging of concurrent programs 	LMC
��� they only solve a part of
the problem� This is due to the large complexity of real concurrent applications�
with many processes and many dynamic interactions� which implies a very large
space of alternative computation paths that must be tried during debugging� In

fact� deterministic re�execution has a limitation because it only allows us to try
each recorded trace in turn� As it is obviously impossible to exhaustively search
all of those paths� we must assure that we are recording and re�executing the
right� traces� The identi�cation of the desired traces that should be inspected
under re�execution must be left to the user under the guidance of a testing tool�
We argue that a debugger should always be complemented with a companion�
program analysis and testing tool� Although testing is beyond the scope of this
paper 	LCH��
� it puts an important requirement on the design of a debugger�
because it demands speci�c mechanisms for tool interfacing 	CLA��b�� This also
applies to the integration of a debugger and a visualization tool� or of a debugger
and a graphical editor for a visual language 	KCD�����

Tool Integration� Recently� much research has concentrated on software en�
gineering environments for parallel and distributed applications� It is recognized
the need of a coherent integration among all the tools and user interfaces in such
environments� In the context of research projects 	S���� on software engineer�
ing for parallel processing� our team has developed a debugger for distributed
applications �DDBG 	CLA��a��� One of its basic requirements was the ability to
integrate easily with tools from other partners� such as the GRED tool for the de�
velopment of programs in the GRAPNEL visual programming language 	KCD�����
and the STEPS testing tool 	LCH��
�� DDBG provides the following functionalities�
a bi�directional interaction where the client issues inspection�control commands
to the debugger� and gets the replies� a mapping of user symbolic process names
to system�level names� command�line �text�oriented�� and graphical user inter�
faces� support for multiple simultaneous client processes�

Heterogeneity� Multiple components of a distributed application may be
programmed in di�erent languages and may spawn through a variety of di�erent
machines� operating systems and communication protocols� Besides this hetero�
geneity� we should be able to reuse� interconnect� and simultaneous control� dis�
tinct pre�existing component level debuggers �i�e� process� or thread�level�� This
is important as such debuggers are typically highly system dependent� and their
development is time consuming� The DDBG prototype supported the debugging
of distributed C�PVM programs but its internal architecture and implementation
would not allow easy integration of new aspects� In this paper we propose a
new debugging support framework with new features for tool integration� and
we describe a new architecture and implementation of a process�level debugger�

Organization of the Paper� First we propose a framework for parallel and
distributed debugging� Section � describes a process�level debugging interface�
Section � presents a distributed monitoring architecture �DAMS� and Section �
shows its use to implement the PDBG debugger�

� A Framework to Support Parallel and Distributed
Debugging

A computational model de�nes processes� threads� their groupings� and interac�
tions� This suggests two levels of debugging functionalities�

�� The component�level� This level de�nes state inspection and control of each
individual component �a process or a thread��

�� The coordination�level� This involves state inspection and control of sets of
components� and their interactions�

This view allows the incremental design of the debugger� i�e� by �rst develop�
ing component�level functionalities� and then coordination level functionalities�
While the former are dependent on the component�level debuggers� the latter
should be adaptable according to the user needs� Our goal is to de�ne a basic set
of mechanisms and low�level functionalities that allow us to build such coordi�
nation level services� So in the �rst step we built the two bottom layers �levels �
and �� in our abstract debugging architecture�

�� A layer supporting monitoring and control functionalities� �DAMS��
�� A layer supporting component�level functionalities acting upon processes and
threads� and supported as Service Modules in DAMS�

The development of coordination�level functionalities concerns the establish�
ing global views and global actions� de�ned in terms of sets of processes and sets
of threads� As these high�level functionalities are very close to the semantics of
the distributed application� we provide only the basic mechanisms to support
the user�level de�nition of such global views and actions� In the next incremen�
tal step we build the upper levels �layers � and �� of the abstract debugging
architecture�

�� Coordination�level basic mechanisms support the above high�level services�
�� Coordination�level services are de�ned at the user�level� as speci�c services
with semanticaly�dependent abstractions for each application�

The discussion of the coordination level �layers � and �� is beyound the scope
of this paper� Regarding the component�level functionalities for state inspection
and control �layer ��� we describe the PDBG and the DAMS�

� A Speci�cation of a Process Debugging Interface �PDBG�

Client processes can access the PDBG interface in order to debug distributed
processes�

��� Synchronous and Asynchronous Interactions

A synchronous call interface supports the client requests� The invoker waits until
a completion status is returned by PDBG� reporting success or failure �e�g� one
cannot Continue� a currently running or a terminated process�� A synchronous
mode of operation is necessary because there are well�de�ned sequences of com�
mands that may be issued by a client �controller��� so that the completion

status of each request allows its invoker to make correct assumptions concern�
ing the new state of the target �controlled�� process� However� there is also a
strong motivation for asynchronous operations� In general� the client must be
able to catch well�de�ned events that occur during the execution of the tar�
get processes� e�g� when a breakpoint was placed on the target process� then a
Continue� command was issued� and the client must be noti�ed that the tar�
get process has reached the speci�ed point� Such events may be the �expected
logical� result of some requests from the client process� or they may result from
�possibly unexpected� exceptional conditions that should also be inspected by
the client� e�g� the process receives a system�generated signal� Additionally� the
environment may encompass several concurrent client and target processes which
exhibit asynchronous interactions as a result of each request that is issued by
some controller process� For example� besides a controller and the target pro�
cesses� there may also be a set of observers� e�g� when a controller issues de�
bugging commands and a graphical interface and visualization tool generates
an animated view of the ongoing computation� In order to support a coherent
integration between the debugger and the visualizer an asynchronous event no�
ti�cation mechanism is required so that the visualization tool knows about the
evolution of the controller commands and their outcome in the target computa�
tion�

Event Handling� By default� events are not delivered to any client� By
calling an interface primitive� the invoker declares its interest in being noti�ed
of any events of a speci�ed type �event�� related to state transitions occurring
in the processes that were explicitly identi�ed� On event occurrence� a speci�ed
handler is invoked in the context of the invoker�� On event noti�cation� the
handler receives a structure as an argument which identi�es the event type�
and provides general information� namely a unique �system�generated� event
identi�er� plus information on each event subclass� concerning the process state�
or the name� input arguments and results of the PDBG calls�

There are two kinds of event classes� �i� events associated with target pro�
cess state transitions� �ii� events associated with client interactions with the PDBG
system� The �rst is required to support debugging at the process level� The asso�
ciated events are called Exception events� The second is related to the interaction
of client tools with the debugging environment so they are associated with the
calls made to the PDBG� i�e� their requests and the PDBG replies� The associated
events are called Request events� This allows to support a coherent tool inte�
gration in a parallel software engineering environment� as well as coordination
services involving multiple concurrent tools and the debugger� Some tools can
register their interest in getting information concerning actions being performed
as a result of commands issued by other tools�

Exception events� The following process states are identi�ed as signi��
cant to the de�nition of the semantics of the PDBG primitives� If it�s detached�
the process is unknown� If it�s ready� it has been created in the ready to run

� The implementation of handler invocation is dependent on the programming model
being single or multi�threaded� and is not part of the PDBG interface de�nition�

state� under PDBG� and can start running� under PDBG� and then it can become
stopped by a PDBG command or due to the occurrence of some exception� Fi�
nally it can become terminated by a PDBG or system command� or because it
has reached the end of program�

TerminatedStoppedNon�existent

Ready

continue��

next��

step��

�nish��

return��

detach��attach��

load��

run��
�Exit�

�Breakpoint�

�Signal�

interrupt��

killproc��

�Create� �Exit�

Running

Detached

Fig� �� The process state transition

In the Figure � the state transitions are labelled by the names of the associ�
ated PDBG or system primitives� or by the associated exceptions�

Request Events� Events of the Request class are associated with the invo�
cation and completion of the PDBG primitives�

��� The PDBG Interface primitives

The following classes of PDBG interface primitives allow a client tool to control
and inspect multiple distributed processes�

Control of the Debugging Session� control of the debugging session� put a
process under debugger control �a new process that will execute a given
program �le is created and put in the ready state� or an existent detached
process is put under debugging control in the stopped state� remove a process
from debugging control� kill a stopped process�

Process Execution� directly control of the execution path followed by an in�
dividual process� once it is known to the debugger� start running a ready
process� send a signal to stop a running process� resume the execution of a
stopped process�

Process State Inspection and Modi�cation� inspect the state of an indi�
vidual process in well�de�ned points� which are reached as a result of break�
points or due to the occurrence of certain types of events �process stopped or
terminated�� The information that can be accessed concerns process status�
variable and stack frame records� as well as source code information� break�
points setting and deleting� expression and variable setting and evaluation�
stack frame inspection and selection� source code information�

� The DAMS Architecture

The goal of the DAMS architecture is to provide a basic layer for distributed
monitoring and control that clearly separates the low�level mechanisms and the
support for application�level services such as debugging� pro�ling� and resource
management�

Client Tool
�Type ��

Client Tool
�Type ��

Client Processes
�machine M��

Machine B

Event propagation

Service call �and reply�

Machine A

DAMS

Module �
Library

Module �
Library

Client Processes
�machine M��

Client Tool
�Type ��

Service Module
�Type ��

Service
Manager

Service Module
�Type ��

Process Driver
�Type ��

Target

Process �

Target

Process �

Target

Process �

Local
Manager

Local
Manager

Process Driver
�Type ��

Process Driver
�Type ��

Fig� �� The DAMS architecture

The DAMS architecture �see Figure �� is composed as a hierarchy of processes
of the following types� the Service Manager �SM� and its Service Modules �Sml��
the Local Managers �LM�� one per physical node� the Drivers �D�� each associ�
ated with a Target Process�

The Service Manager � In order to keep DAMS �exible and extensible� the
Service Manager does not handle any application�speci�c commands� It for�
wards them instead to associated Service Modules which are actually linked
to the Service Manager at system generation time� Each Service Module en�
capsulates all the speci�c functionalities required by a certain service� such

as for debugging� pro�ling� or resource management� The Service Manager
is implemented as a multi�threaded process that has two distinct program�
ming interfaces� one facing the application and the other facing the Service
Modules�
�� The application invokes commands of a library which accesses the SM
through the Service Manager Application Programming Interface �SM
API� to access a certain service� e�g� for debugging�

�� The Service Module Application Programming Interface �Sml API� is
used by the SM process in order to communicate with the service module
responsible for activating the application�speci�c commands�

The application side library commands can get the identi�cation of the avail�
able service modules� prepare request bu�ers� and then make calls to the ser�
vice modules� Such requests are sent as messages� through the SM API� and
are then forwarded to the corresponding module by the Service Manager�
The application side library commands can be hidden inside an user�level
library which o�ers a more transparent system�call based interface� e�g� for
the PDBG debugging commands�

The Local Managers� the Drivers� and the Target Processes� On each
node of the physical architecture there is a Local Manager which is respon�
sible for the communication with the Service Manager and the management
of local processes� Each Target Process that runs on a node is controlled
and monitored by an associated Driver process� Drivers are dynamically
launched and attached to target processes� They are responsible for the di�
rect enforcement of application�level commands to each associated target
process� using a well�de�ned protocol for handling requests and answers� In
order to support each individual application�level functionality� one must de�
�ne a pair �Service Module� Driver�� e�g� a debugging service module and a
debugging driver� The Local Managers are responsible for the management
of the driver processes� acting as intermediate between the Service Man�
ager and the Drivers� i�e� they forward messages coming from the SM to
the Drivers� and handle the passing of replies and event noti�cations to the
Service Manager� They also provide status information about the processes
on each node�

Internal DAMS Protocols� In order to keep the DAMS architecture �exible and
easily extensible� there is a well�de�ned set of protocols ruling the interac�
tions between the DAMS components� An architecture independent message�
passing library is used in DAMS that has been mapped onto the PVM com�
munication primitives in the implemented prototype� We are working on
portings to MPI�� and to Windows NT� The DAMS design supports a built�
in asynchronous event mechanism from the target processes to the client
processes which is used to support PDBG events�

Heterogeneity� DAMS is neutral regarding the computational model of the tar�
get processes� All such dependences are under the responsibility of the Ser�
vice Modules and their Driver processes� As a result� DAMS o�ers a very ex�
pressive environment to monitor and control heterogenous application com�
ponents�

� An Implementation of the PDBG Debugging Interface

The PDBG interface supports debugging of sequential C programs� as well as
distributed programs� e�g� C�PVM and C�MPI programs� or heterogeneous pro�
grams with sequential C and parallel C�PVM or C�MPI components� PDBG has
been implemented as a service in the DAMS system� The Debugging Module is
a DAMS module that provides the debugger interface and allows accessing the
target processes� For each target process of the distributed application being
debugged� there is a Debugging Driver which is responsible for inspection and
control operations� Requests to the Service Manager are forwarded to the Local
Manager in the right machine� which in turn forwards the commands to the
Debugging Driver�

An Illustration of the Execution of a PDBG Command� When a
function from the debugging library� e�g� dbg breakset��� is invoked by a client
process� the following interactions are generated�

�� The function arguments are converted into a structure and sent as a message
to the Service Manager �SM� through the DAMS communication library�

�� The SM forwards the message to the Debugging Module �DM�� where it�s
unpacked to be processed� Here� the requested service is identi�ed and the
corresponding set of debugging driver commands is generated� For each com�
mand� the relevant data is packed into another structure and sent to the De�
bugging Driver �DD� through the SM and the Local Manager �LM�� where
it�s unpacked�

�� For each request that arrives to the DD� a new set of process�level debugging
commands is generated and sent to the debugger in sequence� When all
commands are processed� the relevant data is packed into another structure
and sent back to the DM� again through the LM and the SM� where it�s
unpacked if needed�

�� The DD processes the data� if needed� and sends�forwards the �new� data
to the client debugging library� Here the data is unpacked and returned as
return parameters�

Current Status� The current status consists of a de�nition and implemen�
tation of the process�based functionalities �the PDBG interface�� We are working
on the de�nition of coordination support� concerning global views and actions
�distributed replay and breakpoints� and global predicates�� A prototype of PDBG
was implemented supporting the debugging of distributed processes on a hetero�
geneous LAN including PC�s with Linux� and a cluster of Alpha processors with
OSF��� interconnected by FDDI links� The process�level debugger currently in
use is the GNU gdb which is highly portable and tested� but there is a consid�
erable drawback� the gdb is very heavy� We have measured between �� and ���
of the elapsed time in a command execution is spent inside gdb�

	 Conclusions and Related Work

Our current e�ort towards the de�nition of expressive and generic debugging
functionalities is focussed on the following main aspects�

�� A precisely de�ned low�level interface consisting of commands for component�
level state inspection and control�

�� A framework to de�ne coordination�level services for distributed state in�
spection and control� and deterministic re�execution�

�� A speci�cation of the mechanisms to support the interfacing of the debugger
with other tools�

�� An underlying software architecture that addresses the heterogeneity issue�

Aspects ��� and ��� concern the fundamental debugging issues of distributed
state inspection and control and deterministic re�execution� They depend upon
the basic computational model being considered� concerning processes� threads
and sets or groups of such basic entities� A most signi�cant e�ort has recently
been launched with the goal of establishing a common de�nition of debugging
functionalities the HPDF initiative 	BFP�
�� The work presented in this pa�
per is complementary of e�orts such as the HPDF initiative because we expect
the HPDF debugging speci�cations will be easily implemented within our frame�
work� We also expect that the HPDF proposal will strongly in�uence the evo�
lution of our PDBG interface as well as a thread�based interface� The main goal
of our work is to promote an e�ective experimentation with the design and im�
plementation issues by incrementally building prototypes� So� we are following
an approach based on de�ning a hierarchy of debugging support abstractions
such that we can address the above issues in an incremental fashion� i�e� �rst at
component�level and then at a coordination�level� We have paid special atten�
tion to aspect ��� concerning tool interfacing due to our previous experience with
the development of parallel software engineering environments 	CL�
�� In fact�
in modern development application�oriented environments one must consider a
more general situation where multiple controller processes �client tools� as well
as multiple observer processes �also client tools� jointly operate on a set of target
processes� A basic asynchronous event noti�cation mechanism is one important
aspect to support the required coordination of such processes� The above aspects
have in�uenced the design of the DAMS monitoring architecture which is also ad�
dressing the heterogeneity issue� Due to the clear separation of functionalities
in DAMS� one can simultaneous control multiple heterogeneous component�level
debuggers� i�e� process�based� single�threaded or multi�threaded� We also can
provide multiple coexisting client tools such as graphical and visualization in�
terfaces� and other services such as testing tools� that can interact with the
debugging tool 	LCH��
�� Some of the aspects in DAMS can be related to another
ongoing project the OMIS initiative 	LWSB�
�� However� the main distinc�
tion is that DAMS does not aim to provide a built�in monitoring interface with
a standard de�nition� Instead� it provides a very �exible organization to de�ne
new services� including the de�nition of the user interface �through Service Mod�
ules�� and the interfacing with component� or system�level services �through the

Drivers�� Besides the support of distributed heterogenous debugging� DAMS is also
being used to support a resource management service to control the execution
of a heterogeneous parallel computational steering environment 	MC�
��

Acknowledgments� Thanks are due to the reviewers for their comments�
to EC COPERNICUS SEPP �CIPA�C��������� and HPCTI �CP���������� the
Portuguese CI!ENCIA and PRAXIS XXI PROLOPPE �������TIT�������� SETNA�
ParComp �������TIT����
����� and DEC EERP PADIPRO �P������

References

�BFP�� J� Brown� J� Francioni� and C� Pancake� White paper on for�
mation of the high performance debugging forum� Available in
�http���www�ptools�org�hpdf�meetings�mar��whitepaper�html�� Febru�
ary ���

�CL�� J� Cunha and J� Louren�co� An Experiment in Tool Integration� the DDBG
Parallel and Distributed Debugger� EUROMICRO Journal of Systems Ar�

chitecture� �nd Special Issue on Tools and Environments for Parallel Pro�

cessing� ���
�CLA�a� J� C� Cunha� J� Louren�co� and T� Ant�ao� A Debugging Engine for a Parallel

and Distributed Environment� In Hungarian Academy of Sciences�KFKI�
editor� Proceedings of DAPSYS���� �st Austrian�Hungarian Workshop on

Distributed and Parallel Systems� Misckolc� Hungary� October ���
�CLA�b� J� C� Cunha� J� Louren�co� and T� Ant�ao� A Distributed Debugging Tool for

a Parallel Software Engeneering Environment� In EPTM���� �st European

Parallel Tools Meeting� Paris� France� October ��� ONERA�
�KCD��� P� Kacsuk� J� Cunha� G� D�ozsa� J� Louren�co� T� Fadgyas� and T� Ant�ao� A

Graphical Development and Debugging Environment for Parallel Programs�
Parallel Computing�
�������������� February ���

�LCH��� J� Louren�co� J� Cunha� H�Krawczyk� P� Kuzora� M� Neyman� and
B� Wiszniewski� An Integrated Testing and Debugging Environment for
Parallel and Distributed Programs� In EUROMICRO ��� Proceedings of

the �	rd EUROMICRO Conference� pages ������ Budapest� Hungary�
September ��� IEEE Computer Society�

�LMC��� T� J� LeBlanc and J� M� Mellor�Crummey� Debugging Parallel Programs
with Instant Replay� IEEE Transactions on Cumputers� C���
�����������
April ����

�LWSB�� T� Ludwig� R� Wismuller� V� Sunderam� and A� Bode� OMIS � On�Line
Monitoring Interface Speci�cation
Version ����� Technical report� Lehrstuhl
fur Informatik� Technical University of Munich
LRR�TUM�� Munich� Ger�
many� July ���

�MC�� P� D� Medeiros and J� C� Cunha� Interconnecting Multiple Heterogeneous
Parallel Application Components� In Proceedings of EuroPar���� Passau�
Germany� August ���

�S��� S�Winter et al� Software Engineering for Parallel Processing� copernicus
programme� Progress report �� University of Westminster� October ���

�S��� S�Winter et al� High Performance Computing Tools for Industry� copernicus
programme� Progress report �� University of Westminster� April ���

