Publications

Export 79 results:
Sort by: Author Title Type [ Year  (Desc)]
Submitted
In Press
Rocha, H. "Pre-service teachers’ knowledge and the use of different technologies to teach Mathematics." Springer, In Press. Abstract

Teachers are central to the choice of tasks proposed to the students. And the teachers’ knowledge is one of the important elements guiding these choices. Despite the different models that conceptualize the teachers’ knowledge to integrate technology in their practices, research has focused essentially on the integration of a single technology. Little is known about how the work with different technologies can contribute to promote the development of the professional knowledge of pre-service teachers (PTs) or how the use of different technologies mobilizes different domains of the PTs’ knowledge. The main goal of this study is to deepen the understanding about the relation between the PTs’ Knowledge for Teaching Mathematics with Technology (KTMT) and their choice of tasks. The study adopts a qualitative and in-terpretative methodology based on one case study. The main conclusions suggest a strong impact of the PTs’ Learning and Teaching Technology Knowledge (a knowledge related to the impact of technology on the teaching and learning process) and a not so strong impact of their Mathematical and Technological Knowledge (a knowledge related to the impact of technology on the mathematical knowledge). The conclusions also point to the potential of the work with different technologies to deepen the PTs reflections and analysis of tasks.

2021
Rocha, H., P. Palhares, and M. Botelho From classroom teaching to distance learning: the experience of Portuguese mathematics teachers. INTED - 15th annual International Technology, Education and Development Conference. IATED, 2021.
Rocha, H., and M. Botelho Teachers’ knowledge for teaching Mathematics with technology: an analysis of different frameworks. INTED - 15th annual International Technology, Education and Development Conference. IATED, 2021. Abstract

Teacher education is central to promote the development of the professional knowledge of teachers, and
to help them achieve an appropriate integration of digital technologies, an issue that has proved to be a
difficult one. Several authors refer difficulties in the integration of the technology, emphasizing the central
role played by the teachers’ knowledge in classroom use. In this paper we discuss three models (TPACK
– Technological Pedagogical and Content Knowledge, KTMT – Knowledge for Teaching Mathematics with
Technology, PTK / MPTK - Mathematical Pedagogical Technology Knowledge), intending to identify the
main contributions of each model to a deeper understanding of how to promote the teachers’ integration
of technology in the teaching of Mathematics. The study is based on a literature review and on an analysis
of the similarities and differences among the models and its use. On this analysis we identify common
influences among the models as well as influences from other research areas. The main conclusions
achieved point to a common base to all the models considered, but also to several differences among
them, being that some of the models emphasize the role of technology and its impact on Mathematics
learning, but others go further, intending to integrate in the model elements based on the research on
technology or even other theories such as the one on instrumental genesis.

Rocha, H., and S. Palha. "A tecnologia na formação inicial de professores de Matemática – um olhar sobre duas realidades." Formação de professores e tecnologias digitais. Eds. A. Richit, and H. Oliveira. São Paulo, Brasil: LF Editorial, 2021. 1-34. Abstract

Perante as conhecidas dificuldades em alcançar uma adequada integração da tecnologia no processo de ensino e aprendizagem da Matemática, este estudo pretende, apoiando-se na formação ao nível da tecnologia ministrada em duas instituições europeias, identificar aspetos com potencial para promover a formação inicial, no âmbito da tecnologia, de professores de Matemática. Adota-se uma metodologia de índole qualitativa e interpretativa, sendo os dados recolhidos de natureza documental ou relativos a trabalhos de análise e reflexão crítica realizados por dois futuros professores (um de cada instituição). As principais conclusões alcançadas apontam para grandes diferenças entre os contextos de formação, com uma das instituições a valorizar de forma mais significativa a formação na área. Ainda assim, os futuros professores de ambas as instituições mostram alguma tendência para escolher tarefas onde a exploração que é feita da tecnologia fica aquém do seu potencial, onde o recurso ao papel e lápis está sempre presente, e onde a reflexão em torno das características das tarefas e da sua implementação parece ser algo superficial. Apesar da complexidade do processo de integração da tecnologia nas práticas, os aspetos referidos parecem-nos ser dignos de atenção em qualquer programa de formação inicial de professores de Matemática.

Faggiano, E., H. Rocha, A. Sacristan, and M. Santacruz-Rodríguez. "Towards pragmatic theories to underpin the design of teacher professional development concerning technology use in school mathematics." Mathematics Education in the Digital Age: Learning, Practice and Theory . Eds. A. Donevska-Todorova, E. Faggiano, J. Trgalova, H. - G. Weigand, and A. Clark-Wilson. Routledge, 2021. 42-68. Abstract

This chapter aims to make more explicit the grounded or ‘pragmatic theories’ that inform the design of mathematics teachers’ professional development (PD) to exploit technological affordances. It uses aspects of some representative projects that took place in four countries (Colombia, Italy, Mexico, and Portugal) to illustrate lessons learned (e.g., similarities and differences, barriers and opportunities) and provide important insights to inform future PD implementations. To do this, we have identified a set of aspects (and sub-aspects) that emerged in relation to five major themes and reveal our ‘pragmatic theories’ alongside a consideration of the interconnections between these aspects. Our contribution offers a methodological frame to support future PD designs for teachers of mathematics concerning digital technology uses.

2020
Morais, C., J. Terroso, and H. Rocha. "E de repente tudo mudou… - Editorial." Educação e Matemática. 155 (2020): 1.Website
Rocha, H. "Graphical representation of functions using technology: a window to teacher knowledge." Teaching Mathematics and its Applications. 39.2 (2020): 105-126.Website
Viseu, F., and H. Rocha. "Interdisciplinary technological approaches from a mathematics education point of view." Science and mathematics education for 21st century citizens: challenges and ways forward. Eds. L. Leite, E. Oldham, A. Afonso, F. Viseu, L. Dourado, and H. Martinho. Nova Science Publishers, 2020. Abstract

Mathematics has a strong presence in the school curriculum, often justified by its usefulness in social life, in the world of work and by its connections with other sciences. This interdisciplinary connection, in particular when it requires constructing and refining mathematical models and discussing their applications to solve problems of other sciences, can assist students to understand why mathematics is so important in school. In the development of interdisciplinary activities, the characteristics of the tasks emerge as an important aspect. The emphasis is on the use of technological materials and the way they can support the development of concepts, provide different representations and support deeper understandings, and offer a multifaceted support to collect data and simulate experiences. Based on these assumptions, the aim of this chapter is to present, analyse and discuss tasks that promote interdisciplinary technological approaches from a mathematical point of view. In this chapter we assume interdisciplinarity as a complex construct, and in order to clarify its meaning we will discuss several types of conceptions, from multidisciplinary, to interdisciplinary, and to transdisciplinary. We will then address related concepts, such as modelling and STEM, highlighting similarities and differences between them, to reach an understanding of interdisciplinarity. In the process of the interdiciplinary approach, digital technologies arise as a central element. Based on a set of tasks on mathematics and on different sciences, we discuss what can change on an interdisciplinary approach to the teaching and learning of mathematical content and on the articulation between subjects.

Rocha, H., I. Oitavem, F. Viseu, and S. Palha. "Reinvenção do ensino a distância: a inovação ao ritmo de cada professor." Educação e Matemática. 155 (2020): 16-20. AbstractWebsite

A suspensão das aulas presenciais na sequência da pandemia que estamos a atravessar trouxe para primeiro plano o ensino a distância. Neste artigo partilhamos algumas ideias e conceptualizações relativas a este tipo de ensino, abordamos aquilo que alguns autores que se têm dedicado à temática apontam como importantes desafios e oportunidades que se lhe encontram associados e, por fim, partilhamos algumas possíveis opções e recursos que pensamos poderem ser úteis para todos os professores que estão a viver a sua primeira experiência de ensino a distância.

Rocha, H., E. Faggiano, and F. Mennuni. "Teachers as task designers in the digital age: Teaching using technology." Proceedings of the 10th ERME Topic Conference - MEDA 2020. Linz (Austria): ERME, 2020. Abstract2020_meda_rocha_faggiano_mennuni.pdf

The aim of the paper is to present and analyse the case of one teacher attempting to introduce his students to fractals using digital technology. His task design process has been made explicit through the writing of a storyboard. It has been analysed in order to focus on the stages of the process, identifying prominent elements in it by using the knowledge quartet framework. Results can be useful to inform teacher educators about his needs with respect to the development of his ability in task design. The importance of this aspect, particularly worth of note in the digital age in which teachers have many opportunities to access teaching resources online, has been amplified by the constraints to which educational systems have been subjected during the Covid-19 pandemic emergency.

Rocha, H. "Using tasks to develop pre-service teachers’ knowledge for teaching mathematics with digital technology." ZDM Mathematics Education. 52.7 (2020): 1381-1396. AbstractWebsite

Teacher education is central to the development of the professional knowledge of pre-service teachers. The main goal of this paper is to refect on the development that the analysis (done by a group of pre-service secondary teachers) of a set of tasks, based on elements related to domains of KTMT—Knowledge for Teaching Mathematics with Technology—can bring to the knowledge of pre-service teachers of mathematics. Specifcally, the goal was to investigate the following questions: (1) What are the factors that guide the pre-service teachers’ task discussion? (2) Which KTMT domains are emphasized by pre-service teachers during task discussion? The elements taken into account are the characteristics of the tasks (focus on cognitive level, structuring level and technology role), the use of representations (focus on balance and articulation of representations), and the equilibrium between experimentation (focus on digital technology afordances) and justifcation (focus on argumentation and proof). The methodology of this case study involves a qualitative approach. The main conclusions suggest that infuences in the pre-service teachers’ discussion of tasks fell into the following categories: the potentialities of technology, the type of tasks, and the prospective teachers’ experience with a set of tasks, and analysis of some real students’ reports. With regard to KTMT, although it was possible to identify some global development, Teaching and Learning and Technology Knowledge was the domain in which stronger development took place.

2019
Rocha, H. As diferentes representações de funções e a compreensão de alunos do ensino secundário num contexto de integração da tecnologia. XV Congresso Internacional Galego-Portugués de Psicopedagogia. Corunha, Espanha: Asociación Científica Internacional de Psicopedagogía, 2019. Abstract

The different representations of functions are assumed as central on the development of the concept of function. Being widely recognized the complexity of this concept, the different representations allow the student to understand in a representation what could not be understood in another representation. And the integration of technology into the teaching and learning process provides an easy and quick way to access different representations. This study intends to analyse the understanding of upper secondary students about the information transmitted by each of the representations of functions usually available on technology. Specifically, it intends to understand which transitions between representations are more easily understood by the students and which ones are more difficult to perform. It also intended to identify some aspects that may contribute to this. This study adopts a quantitative methodology in which the answers given by a class to a test focused on the transition from one representation to another are analysed; and a qualitative methodology based on interviews to three of the students in the class, as a way of seeking comprehension about their answers. The results achieved suggest a greater ease of understanding associated to the graphical representation and a greater difficulty associated to the tabular representation. The reasons for this seem to be related to the specific characteristics of each representation, but fundamentally with aspects related to the experiences lived by the students on the mathematics classes, being the integration of technology an influence not to neglect.

Rocha, H., and I. Oitavem. "Barcodes: The Mathematics of everyday life." The Scottish Mathematical Council Journal. 49 (2019).Website
Rocha, H. Desenvolver o conhecimento de futuros professores sobre as características das tarefas e o papel que a tecnologia pode assumir nestas. SIEM. Castelo Branco, Portugal: APM, 2019. Abstract

The main goal of this work is to characterize how the knowledge of pre-service teachers about the characteristics of the tasks and the role of technology evolves. Based on a case study carried out around a pair of pre-service teachers, the main conclusions point to the contribution of the reflection around a set of six tasks on Functions selected by the pre-service teachers. Central to this reflection was an analyze of the role technology can play in tasks, the comments made by the colleagues to their tasks and some experiences on modeling and open-ended tasks. These elements provided the development of a greater awareness regarding aspects such as the level of structuring of the task and its degree of challenge. And this was determinant for an appropriation of the different characteristics of the tasks and to the development of the pre-service teachers’ knowledge.

Rocha, H. The impact of technology on the teachers’ use of different representations. CERME. Utrecht, Holanda: ERME, 2019. Abstract

The potential of using different representations is widely recognized, but not much is known about how teachers use them nor about the impact of the technology on such use. The goal of this study is to characterize the teachers’ representational fluency when teaching functions at high school level, discussing, at the same time, the impact in the use of representations resulting from the use of technology. Adopting a qualitative approach, I analyze one teacher’s practice. The results suggest that algebraic and graphical representations are seen as more important, that tabular representation is assumed as irrelevant and that the access to technology impacts the learning, the representations used and how they are used.

Rocha, H. Interdisciplinary tasks: pre-service teachers’ choice and approach. ATEE Winter Conference - Science and mathematics education in the 21st century. Brussels: ATEE and CIEd, 2019. Abstract

This study focusses on the criteria used by pre-service teachers of Mathematics to choose interdisciplinary tasks. The pre-service teachers’ knowledge is assumed as the basis of the actions taken and used as the origin of the choices and approaches observed. The study adopts a qualitative and interpretative methodology and the data were collected using class observation and interviews. The analysis is guided by the Application and Pedagogical Content Knowledge, a model inspired on TPACK (from Mishra and Koehler) and MKT (from Ball and colleagues). The conclusions point to an appreciation of the mathematical part of the tasks and to a devaluation of the remaining components. This suggests difficulty in articulating and integrating different domains of knowledge and points to a fragmented view of the potential of using mathematical applications.

Rocha, H. "Mathematical proof: from mathematics to school mathematics." Philosophical Transactions of the Royal Society A. 377.2140 (2019). AbstractWebsite

Proof plays a central role in developing, establishing, and communicating mathematical knowledge. Nevertheless it is not such a central element in school mathematics. This article discusses some issues involving mathematical proof in school, intending to characterize the understanding of mathematical proof in school, its function and the meaning and relevance attributed to the notion of simple proof. The main conclusions suggest that the idea of addressing mathematical proof at all levels of school is a recent idea that is not yet fully implemented in schools. It requires an adaptation of the understanding of proof to the age of the students, reducing the level of formality, and allowing the students to experience the different functions of proof and not only the function of verification. Among the different functions of proof, the function of explanation deserves special attention due to the illumination and empowerment that it can bring to the students and their learning. The way this function of proof relates to the notion of simple proof (and the related aesthetic issues) seems relevant enough to make it, in the future, a focus of attention for the teachers who address mathematical proof in the classroom.