FRP

Showing results in 'Publications'. Show all posts
A Nonlinear Analytical model to predict The full-range debonding process of FRP-to-parent material interfaces free of any mechanical anchorage devices, Biscaia, Hugo C., Borba Isabel S., Silva Cinderela, and Chastre Carlos , Composite Structures, 15 March 2016, Volume 138, p.52-63, (2016) AbstractWebsite

Ever since Fibre Reinforced Polymers (FRP) began to be used in the repair or strengthening of structural elements, the premature debonding of the FRP composite from the substrate has been an important drawback that have been motive of several studies. The importance of knowing and describing the full-range behaviour of FRP-to-parent material interfaces rigorously is therefore urgent. However, at present, there are no analytical solutions that describe the full-range behaviour of such interfaces that help us to understand the full debonding phenomena of FRP-to-parent material interfaces free of any mechanical anchorage devices. Therefore, the aim of this study is to contribute the advances of that knowledge through an analytical solution by means of an exponential bond-slip model that is known to represent the nonlinearities involved in the debonding process of the FRP composite from the substrate. Analytical solutions for the slips, strains in the FRP composite, bond stress distributions along the bonded interface and stresses in the substrate are presented. A full-range load-slip analysis is also discussed.

A new discrete method to model unidirectional FRP-to-parent material bonded joints subjected to mechanical loads, Biscaia, Hugo C., Chastre Carlos, and Viegas André , Composite Structures, 3//, Volume 121, p.280-295, (2015) AbstractWebsite

Nowadays fiber reinforced polymer (FRP) composites play an important role in the strengthening of structures. Different methods can be used to apply these materials: the externally bonded reinforcement (EBR), and the near surface mounted (NSM) using strips and NSM rods. There are only a few studies comparing these methods or presenting an efficient model to simulate these strengthening techniques. This study looks mainly at the analysis of the interface between FRP-to-parent material bonded joints. The paper examines, through a new discrete model based on axial and shear springs, the performance of FRP-to-parent material bonded joints for EBR or NSM techniques using strips or composite rods. In order to implement the model a routine in MATLAB was developed and several bond–slip curves were assumed. The results revealed that load–slip curves or bond stresses, strains or slippages along the bonded length obtained from several bond–slip curves are similar to the analytical and other numerical solutions found in literature. In what concerns the adhesion between two different materials, and assuming the same bond characteristics for the three fiber strengthening techniques, the NSM system using FRP strips had the highest maximum load transmitted to the FRP strip combined with the lowest effective bond length. The results obtained from the proposed model were also very accurate with that obtained from an analytical solution found in literature that simulates the debonding phenomenon of FRP-to-concrete interfaces between to adjacent cracks.

Materiais e tecnologias de reforço de estruturas de betão - potencialidade e limitações, Chastre, Carlos , REHABEND 2014 - Congresso Latinoamericano "Patología de la construcción, Tecnología de la rehabilitacíon y gestión del patrimonio"., 2014, Santander, (2014) Abstractcarlos_chastre__-_rehabend2014_-_santander.pdf

O desenvolvimento da engenharia de estruturas tem tido grandes avanços nas últimas décadas, baseados em novos meios de cálculo e na investigação em novos materiais e tecnologias a eles associadas. Por sua vez, as atividades de reparação e reforço têm vindo a incrementar devido ao envelhecimento e à degradação das estruturas de betão, o que consequentemente tem dado origem ao aparecimento de novos materiais e tecnologias de reparação e reforço de estruturas. A utilização destes novos materiais na construção tem vindo a substituir outros materiais e técnicas existentes, requerendo, no entanto, mais estudos sobre o seu real comportamento quer em termos de caracteristicas mecânicas quer em termos de durabilidade.

Monotonic axial behavior and modelling of RC circular columns confined with CFRP, Chastre, Carlos, and Silva Manuel A. G. , Engineering Structures, Aug, Volume 32, Number 8, p.2268-2277, (2010) AbstractWebsite

The retrofit of reinforced concrete columns with FRP jackets has received considerable attention in recent years. The advantages of this technique compared to other similar techniques include the high strength-weight and stiffness-weight ratios of FRP (Fibre Reinforced Plastics), the strength and ductility increase of RC columns confined with FRP jackets as well as the fact that FRP external shells prevent or mitigate environmental degradation of the concrete and consequent corrosion of the steel reinforcement. Furthermore, this method also reduces the column transversal deformation and prevents the buckling of longitudinal reinforcement. Twenty five experimental tests were carried out on reinforced concrete columns confined with CFRP composites, and subjected to axial monotonic compression. In order to evaluate the influence of several parameters on the mechanical behavior of the columns, the height of the columns was maintained, while changing other parameters: the diameter of the columns, the type of material (plain or reinforced concrete), the steel hoop spacing of the RC columns and the number of CFRP layers. Predictive equations, based on the experimental analysis, are proposed to estimate the compressive strength of the confined concrete, the maximum axial load and the axial or the lateral failure strain of circular RC columns jacketed with CFRP. A stress-strain model for CFRP confined concrete in compression, which considers the effect of the CFRP and the transversal reinforcement on the confined compressive strength of the column is also proposed. The curves, axial load versus axial or lateral strain of the RC column, are simulated based on the stress-strain model and include the longitudinal reinforcement effect. The results demonstrate that the model and the predictive equations represent very well the axial compression behavior of RC circular columns confined with CFRP. The applicability of this model to a large spectrum of RC column dimensions is its main advantage.