Publications

Export 36 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
N
Fortunate, E.a, Ferreira Giuliani Wurmsdobler Martins I. a F. a. "New ultra-light flexible large area thin film position sensitive detector based on amorphous silicon." Journal of Non-Crystalline Solids. 266-269 B (2000): 1213-1217. AbstractWebsite

In this paper we report on large area one dimensional (1D) amorphous silicon position sensors deposited on flexible polymer foil substrate. The pin sensor structure was deposited by rf plasma enhanced chemical vapour deposition (PECVD). For the electrical and optical characterisation the sensors have been mounted on a convex holder with a 14-mm radius-of-curvature, since the main goal of this work is to develop a flexible position sensor to be incorporated in a micromotor in order to measure its angular velocity continuously. The obtained sensors present adequate performances concerning the position non-linearity (±1% in 20 mm length), comparable to those fabricated on glass substrates. © 2000 Elsevier Science B.V. All rights reserved.

Malik, A.a, Sêco Fortunato Martins A. b E. a. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications. © 1998 Elsevier Science S.A. All rights reserved.

Malik, A., Seco Fortunate Martins A. E. R. "New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide." Sensors and Actuators, A: Physical. 67 (1998): 68-71. AbstractWebsite

UV-enhanced monocrystalline zinc sulphide optical sensors with high quantum efficiency have been developed by spray deposition of heavy fluorine-doped tin oxide (FTO) thin films onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced high-efficiency silicon photodetectors commonly used in precise radiometric and spectroscopic measurements as well as to new sensors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that is nearly 100% from 250 to 320 nm, and the typical sensitivity at 250 nm is 0.15 A W-1. The sensors are insensitive to solar radiation in conditions on the earth and can be used as solar blind photodetectors for precision UV measurements under direct solar illumination for both terrestrial and space applications.

Fortunato, E., Barquinha Pimentel Gonçalves Pereira Marques Martins P. A. A. "Next generation of thin film transistors based on zinc oxide." Materials Research Society Symposium Proceedings. Vol. 811. 2004. 347-352. Abstract

We report high performance ZnO thin film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19 V, a field effect mobility of 28 cm2/Vs, a gate voltage swing of 1.39 V/decade and an on/off ratio of 3×105. The ZnO-TFT present an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high field-effect mobility and room temperature processing makes the ZnO-TFT a very promising low cost optoelectronic device for the next generation of invisible and flexible electronics.

Elangovan, E., Marques Martins Fortunato A. R. E. "A next generation TCO material for display systems: Molybdenum doped indium oxide thin films." Materials Research Society Symposium Proceedings. Vol. 936. 2006. 1-6. Abstract

Thin films of indium molybdenum oxide (IMO) were rf sputtered onto glass substrates at room temperature. The films were studied as a function of sputtering power (ranging 40-180 W) and sputtering time (ranging 2.5-20 min). Thickness of the films found varied between 50-400 nm. The films were characterized for their structural (XRD), electrical (Hall measurements) and optical (Transmittance spectra) properties. XRD studies revealed that the films are amorphous for the sputtering power ≤ 100 W and deposition time ≤ 5 min. All the other films are polycrystalline and the strongest refection along (222) plane showing a preferential orientation. A minimum bulk resistivity of 2.65 × 10-3 Ω-cm and a maximum carrier concentration of 4.16 × 1020 cm-3 have been obtained for the films sputtered at 180 W (10 min). Whereas maximum mobility (19.5 cm2 V-1 s-1) has been obtained for the films sputtered at 80 W (10 min). A maximum visible transmittance of 90% (500 nm) has been obtained for the films sputtered at 80 W (10 min) with a minimum of 27% for those sputtered at 180 W. The optical band gap of the films found varying between 3.75 and 3.90 eV for various sputtering parameters. © 2006 Materials Research Society.

Pereira, L.a, Martins Schell Fortunato Martins R. M. S. b. "Nickel-assisted metal-induced crystallization of silicon: Effect of native silicon oxide layer." Thin Solid Films. 511-512 (2006): 275-279. AbstractWebsite

This work focuses on the role of the native oxide layer (SiO2) on the nickel (Ni)-assisted crystallization of amorphous silicon (a-Si). In some samples, the native oxide was removed using a HF-diluted solution before Ni layers with 0.5 nm be deposited on a-Si. The results show that the presence of a thin SiO2 layer of about 3 nm between the a-Si and the Ni delays the crystallization process. Ellipsometry data show that, after annealing for 5 h at 500 °C, the HF-cleaned sample presents a crystalline fraction of 88%, while the one with the native oxide has only 35%. This difference disappears after 20 h where both samples present similar crystalline fraction. These facts are also reflected on the film's electrical properties, where the activation energy for samples annealed for 5 h rises from 0.42 eV to 0.55 eV, when the oxide layer is removed. After 20 h and 30 h, the activation energy is around 0.55 eV for both kinds of samples, meaning that films with similar electrical properties are now obtained. However, the XRD data suggest the presence of some structural differences attributed to slight differences on the crystallization process. © 2005 Elsevier B.V. All rights reserved.

Bahubalindruni, P.G.a c, Tavares Fortunato Martins Barquinha V. G. b E. "Novel linear analog-adder using a-IGZO TFTs." Proceedings - IEEE International Symposium on Circuits and Systems. Vol. 2016-July. 2016. 2098-2101. Abstract

A novel linear analog adder is proposed only with n-type enhancement IGZO TFTs that computes summation of four voltage signals. However, this design can be easily extended to perform summation of higher number of signals, just by adding a single TFT for each additional signal in the input block. The circuit needs few number of transistors, only a single power supply irrespective of the number of voltage signals to be added, and offers good accuracy over a reasonable range of input values. The circuit was fabricated on glass substrate with the annealing temperature not exceeding 200° C. The circuit performance is characterized from measurements under normal ambient at room temperature, with a power supply voltage of 12 V and a load of ≈ 4 pF. The designed circuit has shown a linearity error of 2.3% (until input signal peak to peak value is 2 V), a power consumption of 78 μW and a bandwidth of ≈ 115 kHz, under the worst case condition (when it is adding four signals with the same frequency). In this test setup, it has been noticed that the second harmonic is 32 dB below the fundamental frequency component. This circuit could offer an economic alternative to the conventional approaches, being an important contribution to increase the functionality of large area flexible electronics. © 2016 IEEE.

Santos, V.a, Borges Ranito Pires Araújo Marques Tomás Fortunato Martins Nunes J. P. a C. "Novel multilayer coatings on polyethylene for acetabular devices." Materials Science Forum. 514-516 (2006): 868-871. AbstractWebsite

Total hip replacement is a common practice in every day clinical work. Artificial hip implants consist of a femoral component and an acetabular component. Nowadays the acetabular component is composed of a polymeric cup and a metallic shell. This study focuses the development of an innovative acetabular component substituting the metallic shell by a multilayer coating on the acetabular cup. A titanium coating was deposited onto ultra-high molecular weight polyethylene (UHMWPE) samples by physical vapour deposition (PVD), having an in situ pre-treatment with argon ion bombardment in order to optimize the adhesive strength by surface modification, followed by the deposition of a thin film of hydroxyapatite (HA) using rf magnetron sputtering technique, at room temperature. Results obtained seem to indicate that these multilayer coatings can be a viable alternative to the metallic shell, leading to the substitution of a two part for a one part acetabular component.

Silva, L.B.a, Baptista Raniero Doria Franco Martins Fortunato P. b L. c. "Novel Optoelectronic platform using an amorphous/nanocrystalline Silicon biosensor for the specific identification of unamplified nucleic Acid sequences based on gold nanoparticle probes." TRANSDUCERS and EUROSENSORS '07 - 4th International Conference on Solid-State Sensors, Actuators and Microsystems. 2007. 935-938. Abstract

Here we describe an innovative optoelectronic platform which enables the specific detection of unamplified nucleic acid sequences with the integration of oligonucleotide-derivatized gold nanoparticles, a colour sensor and a light emission source for a colorimetric detection method. This new low cost, fast and simple optoelectronic platform permits detection of less than 1 picomole quantities of nucleic acid without target or signal amplification. ©2007 IEEE.

Fernandes, M.a, Vieira Martins M. a R. b. "Novel structure for large area image sensing." Sensors and Actuators, A: Physical. 115 (2004): 357-361. AbstractWebsite

This work presents preliminary results in the study of a novel structure for a laser scanned photodiode (LSP) type of image sensor. In order to increase the signal output, a stacked p-i-n-p-i-n structure with an intermediate light-blocking layer is used. The image and the scanning beam are incident through opposite sides of the sensor and their absorption is kept in separate junctions by an intermediate light-blocking layer. As in the usual LSP structure the scanning beam-induced photocurrent is dependent on the local illumination conditions of the image. The main difference between the two structures arises from the fact that in this new structure the image and the scanner have different optical paths leading to an increase in the photocurrent when the scanning beam is incident on a region illuminated on the image side of the sensor, while a decreasing in the photocurrent was observed in the single junction LSP. The results show that the structure can be successfully used as an image sensor even though some optimization is needed to enhance the performance of the device. © 2004 Elsevier B.V. All rights reserved.

Fantoni, A., Vieira Cruz Martins M. J. R. "Numerical simulation of a/μc-Si:H p-i-n photo-diode under non-uniform illumination: A 2D transport problem." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 2997. 1997. 234-243. Abstract

We report here about a computer simulation program, based on a comprehensive physical and numerical model of an a/μc-Si:H p-i-n device, applied to the 2D problem of describing the transport properties within the structure under non- uniform illumination. The continuity equations for holes and electrons together with Poisson's equation are solved simultaneously along the two directions parallel and perpendicular to the junction. The basic semiconductor equations are implemented with a recombination mechanism reflecting the microcrystalline structure of the different layers. The lateral effects occurring within the structure, due to the non-uniformity of the radiation are outlined. The simulation results obtained for different wavelengths of the incident light are compared and shown their dependence on the energy of the radiation. The results of simulating a p-i-n μc-Si:H junctions under non-uniform illumination is that the generated lateral effects depend not only in intensity but also in direction on the wavelength of the incident radiation. ©2004 Copyright SPIE - The International Society for Optical Engineering.