Publications

Export 27 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
C
Lima, M. M., and R. Monteiro. "Characterisation and thermal behaviour of a borosilicate glass." Thermochimica Acta. 373 (2001): 69-74. AbstractWebsite

The changes occurring during the heating of a borosilicate glass have been investigated by differential thermal analysis, dilatometric analysis and thermomechanical analysis. The thermal properties of this glass, such as glass transition temperature, dilatometric softening temperature and linear thermal expansion coefficient, have been determined. Viscosity measurements in the temperature range 898-1048 K were performed in a thermomechanical analyser equipped with a penetration attachment for isothermal measurement, and from the temperature dependence of viscosity a value of 290 kJ mol-1 was obtained for the activation energy for viscous flow. Devitrification of the glass was observed, specifically in finely powdered glass samples, where the precipitation of cristobalite was identified by X-ray diffraction. Glass powder compacts sintered by viscous flow and cristobalite precipitation reduced strongly the shrinkage rate. © 2001 Elsevier Science B.V.

Kullberg, A. T. G., A. A. S. Lopes, J. P. B. Veiga, and R. C. C. Monteiro. "Crystal growth in zinc borosilicate glasses." Journal of Crystal Growth. 457 (2017): 239-243. AbstractWebsite

Glass samples with a molar composition (64+x)ZnO–(16−x)B2O3–20SiO2, where x=0 or 1, were successfully synthesized using a melt-quenching technique. Based on differential thermal analysis data, the produced glass samples were submitted to controlled heat-treatments at selected temperatures (610, 615 and 620 °C) during various times ranging from 8 to 30 h. The crystallization of willemite (Zn2SiO4) within the glass matrix was confirmed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Under specific heat-treatment conditions, transparent nanocomposite glass-ceramics were obtained, as confirmed by UV–vis spectroscopy. The influence of temperature, holding time and glass composition on crystal growth was investigated. The mean crystallite size was determined by image analysis on SEM micrographs. The results indicated an increase on the crystallite size and density with time and temperature. The change of crystallite size with time for the heat-treatments at 615 and 620 °C depended on the glass composition. Under fixed heat-treatment conditions, the crystallite density was comparatively higher for the glass composition with higher ZnO content. © 2016 Elsevier B.V.

Soares, R. S. a, R. C. C. a Monteiro, A. A. S. a Lopes, M. M. R. A. a Lima, B. A. b Sava, and M. b Elisa. "Crystallization and microstructure of Eu3 +-doped lithium aluminophosphate glass." Journal of Non-Crystalline Solids. 403 (2014): 9-17. AbstractWebsite

A transparent Eu3 +-doped lithium aluminophosphate glass was prepared by melt-quenching technique. The thermal behavior of the glass was investigated by differential thermal analysis (DTA), the structure was studied by X-ray diffraction (XRD) and the morphology was observed by optical polarization microscopy and scanning electron microscopy (SEM). The activation energy of glass transition and the activation energy of crystallization and Avrami exponent have been evaluated under non-isothermal conditions from the data obtained by DTA at different heating rates. DTA curves exhibited an endothermic peak associated with the glass transition and two exothermic peaks. The mean value calculated for the activation energy of glass transition was 545 kJ mol- 1. The activation energy of crystallization was   400 kJ mol- 1 for the first exothermic peak and   170 kJ mol- 1 for the second peak. The Avrami exponent was   1 for both peaks indicating surface crystallization. XRD results showed that the main crystalline phase, aluminum metaphosphate, Al(PO3)3, and aluminum phosphate, AlPO4, were formed together with lithium barium phosphate, Li 3Ba(PO3)7, during the first exothermic peak and together with barium pyrophosphate, Ba2P2O7, during the second peak. Morphological study of heat-treated glass samples revealed microstructural features that confirmed a surface crystallization process. © 2014 Elsevier B.V.

Lopes, A. A. S. a, R. C. C. a Monteiro, R. S. a Soares, M. M. R. A. a Lima, and M. H. V. b Fernandes. "Crystallization kinetics of a barium-zinc borosilicate glass by a non-isothermal method." Journal of Alloys and Compounds. 591 (2014): 268-274. AbstractWebsite

The crystallization kinetics of a glass with a molar composition 40BaO-20ZnO-30B2O3-10SiO2 was investigated. The kinetic parameters, activation energy for crystallization (Ec) and Avrami exponent (n), were evaluated under non-isothermal conditions using the results obtained by differential thermal analysis (DTA) performed at different heating rates. DTA curves exhibited two overlapping exothermic peaks associated with the crystallization of the glass. Barium borate (BaB4O 7) was the first crystalline phase to be formed and it was followed by the formation of barium zinc silicate (BaZnSiO4), as identified by XRD. For the first exothermic peak, when the fraction of crystallization (χ) increased from 0.1 to 0.9, the local activation energy (E c(χ)) decreased from 700 to 500 kJ/mol, while for the second exothermic peak, Ec(χ) slightly increased from 490 to 570 kJ/mol. For the range of 0.1 < χ < 0.9, the local Avrami exponent (n(χ)) increased from ∼1 to 1.4 for the first exothermic peak and it decreased from ∼1.7 to 1.4 for the second exothermic peak. Observation by SEM of the microstructure of sintered glass samples revealed that crystallization started at the surface of glass particles, with growth of lamellar crystallites, that together with some quasi-spherical nano-sized crystallites progressed towards the inside of the glass at the highest sintering temperatures. The change of the local activation energy with the fraction of crystallization suggested that a multi-step kinetic reaction took place during sintering and crystallization of the glass. © 2013 Elsevier B.V. All rights reserved.

Lima, M. M. R. A., and R. C. C. Monteiro. "Crystallization of a borosilicate glass during sintering studied by dilatometry and XRD analysis." Materials Science Forum. 455-456 (2004): 212-215. AbstractWebsite

The crystallization of a borosilicate glass, when compacts of powdered glass were sintered under various conditions, was investigated by dilatometric and XRD analysis. The dilatometry results from non-isothermal sintering experiments until 800°C, performed at different heating rates (1, 2, 5, 8 and 10°C/min), revealed that the compacts started to shrink above ∼ 600°C and that the shrinkage decreased with the increase of the heating rate for temperatures up to ∼750°C. Above this temperature, and specifically when the samples were heated at heating rates < 5°C /min, the shrinkage was hindered, while samples heated at heating rates ≥ 5°C/min showed continuous shrinkage. XRD results showed that the formation of cristobalite had occurred during the sintering at the lowest heating rates and therefore, the presence of this crystalline phase was affecting the shrinkage of the compacts, inhibiting further sintering of the glass. The crystallization of the glass when sintered at a temperature in the range 700-850°C and hold at the selected temperature during various times was also analysed. XRD results showed that both cristobalite and quartz were present in glass compacts sintered under particular conditions (for example, after heating during 24h at 725°C and 765°C). Quartz dissolution took place when the glass samples were sintered at 850°C. At this temperature and whatever the sintering time, cristobalite was the only crystalline phase present in the sintered compacts.

Monteiro, R. C. C., F. P. Glasser, and E. E. Lachowski. "Crystallization of CaO-Al2O3-SiO2 and CaO-MO-Al2O3-SiO2 (M=Mg, Zn) glasses." Journal of Materials Science. 24 (1989): 2839-2844. AbstractWebsite

A range of CaO-Al2O3-SiO2 glasses have been prepared by fusion of pure starting materials in platinum crucibles. Compositions containing large amounts on network formers, Al2O3 and SiO2, are difficult to crystallize. If the amount of network former is reduced, glasses will self-nucleate and crystallize more readily, but the products of crystallization tend to react with water. This conflict has been partly resolved by adding MgO and ZnO and tailoring compositions so as to produce a phase, variously designated "Q" or "pleochroite", ideally Ca20Al32-2 vMg vSivO68, with v close to 4. Pleochroite crystallizes with a typically fibrous morphology. Preliminary experiments on fragments and melt-cast glass rods indicate that these compositions can be heat treated without deformation to yield highly crystalline, transparent ceramics. © 1989 Chapman and Hall Ltd.

Soares, R. S., R. C. C. Monteiro, M. M. R. A. Lima, and R. J. C. Silva. "Crystallization of lithium disilicate-based multicomponent glasses - Effect of silica/lithia ratio." Ceramics International. 41 (2014): 317-324. AbstractWebsite

Two glass compositions were prepared from the system SiO2-Li2O-K2O-ZrO2-P2O5 with different SiO2/Li2O ratio (2.39 and 3.39) and the crystallization behavior was investigated by differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallization kinetic parameters (activation energy of crystallization and Avrami exponent) were evaluated by different methods from the data obtained by DTA performed at different heating rates. For both glasses, two exothermic peaks were observed in the DTA curves, and the crystallization peak temperatures increased with SiO2/Li2O ratio. XRD analysis revealed that the first peak corresponds to the crystallization of lithium metasilicate (Li2SiO3) and the second to the formation of lithium disilicate (Li2Si2O5). After heating the glasses at a temperature above the second crystallization peak (900 °C), both Li2Si2O5 and Li2SiO3 were found in samples having the lowest SiO2/Li2O ratio, whereas no Li2SiO3 was detected in samples with the highest SiO2/Li2O ratio. For both glasses, the value obtained by different methods for the activation energy of crystallization was in the range of 225-275 kJ mol-1 for the first exothermic peak and in the range of 425-500 kJ mol-1 for the second peak. The estimated Avrami exponent was close to 1 for the first exothermic peak, indicating surface crystallization, and close to 3 for the second exothermic peak, suggesting volume crystallization. This was confirmed by the morphological study made by SEM that showed needle-like crystals in the microstructure of samples with lithium metasilicate and granular crystals in the microstructure of samples having lithium disilicate. © 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

D
PerdigãO, J. a, A. M. b Pinto, R. C. C. c Monteiro, F. M. c Braz Fernandes, P. b Laranjeira, and J. P. c Veiga. "Degradation of dental ZrO 2-based materials after hydrothermal fatigue. part I: XRD, XRF, and FESEM analyses." Dental Materials Journal. 31 (2012): 256-265. AbstractWebsite

The aim was to investigate the effect of simulated low-temperature degradation (s-LTD) and hydrothermal fatigue on the degradation of three ZrO2-based dental materials. Lava, IPS, and NanoZr discs were randomly assigned to (1) Control-Storage in distilled water at 37°C; (2) Aging at 134°C for 5 h (s-LTD); (3) Thermocycling in saliva for 30,000 cycles (TF). XRD revealed that ZrO 2 m phase was identified in all groups but TF increased the m phase only for Lava. Under the FESEM, Lava showed no alterations under s-LTD, but displayed corrosion areas up to 60 μm wide after TF. We conclude that TF accelerated the degradation of Lava through an increase in the m phase and grain pull-out from the material surface.

Monteiro, R. C. C., M. M. R. A. Lima, and C. S. Clemente. "Development of structural ceramics from fly ash and shale." Materials Science Forum. 587-588 (2008): 787-791. AbstractWebsite

The possibility of using fly ash and shale as alternative raw materials for the production of structural ceramics was investigated. Fly ash is a by-product from coal-burning power plants, and shale is a sedimentary rock that if ground finely enough can exhibit a clay-like plasticity. Ceramic samples containing 10-50 wt% fly ash were formed from mechanical mixing of both kinds of powders that were packed and sintered in the temperature range 950-1200°C It was verified that powders with larger fly ash content exhibited lower packing density resulting in compacts with a lower sintered density. Although an increase in fly ash content was associated to a larger presence of porosity in the sintered samples, as confirmed by microstructural analysis, all studied compositions when sintered at the highest temperatures exhibited satisfactory values for water absorption (< 10%), for flexural strength (20-64 MPa) and for hardness (20-30 GPa) indicating that they have potential to be applied in the production of structural ceramics.

E
Monteiro, R. C. C., and M. M. R. A. Lima. "Effect of compaction on the sintering of borosilicate glass/alumina composites." Journal of the European Ceramic Society. 23 (2003): 1813-1818. AbstractWebsite

The effect of initial compaction on the sintering of borosilicate glass matrix composites reinforced with 25 vol.% alumina (Al2O3) particles has been studied using powder compacts that were uniaxially pressed at 74, 200 and 370 MPa. The sintering behaviour of the samples heated in the temperature range 850-1150 °C was investigated by density measurement, axial and radial shrinkage measurement and microstructural observation. The density of the sintered composites increased continuously with temperature for compacts pressed at 74 MPa, while for compacts pressed at 200 and 370 MPa it reached the maximum value at 1050 °C and at higher temperatures it decreased slightly due to swelling. The results showed anisotropic shrinkage behaviour for all the samples, which exhibited an axial shrinkage higher than the radial shrinkage, and the anisotropic character increased with the initial compaction pressure. © 2003 Elsevier Science Ltd. All rights reserved.

Monteiro, R. C. C., C. S. Mota, and M. M. R. A. Lima. "Effect of dolomite addition on the densification of fly ash based ceramics." Materials Science Forum. 514-516 (2006): 1711-1715. AbstractWebsite

Fly ash from Tapada do Outeiro, a coal power plant in the north of Portugal, has been processed by a powder technology route in order to obtain durable and mechanical resistant ceramics. Dolomite (CaC03.MgC03) was added in different proportions to the waste material, from zero up to 10 wt%, and the effect of this addition on the densification behaviour of the fired samples was investigated by measuring the apparent density, the open porosity and the linear shrinkage. The powder mixtures were uniaxially dry pressed in a steel die and fired at temperatures ranging from 950 to 1150°C XRD and SEM were used to identify the phases present in the sintered materials and the degree of densification. The results revealed that added dolomite was responsible for the appearance of anorthite, an extra phase besides mullite and quartz, for an increase in the amount of liquid phase and for the swelling of closed pores at the highest firing temperatures. Significant morphological changes and phase transformations occurred during sintering and their effects on the physical-mechanical and leaching characteristics of the sintered materials were analyzed.

Lima, M. M. R. A., L. F. C. Braz, R. C. C. Monteiro, and JP Veiga. "Effect of phosphogypsum on the clinkerization temperature of portland cement clincker." Materials Science Forum. 730-732 (2013): 94-99. AbstractWebsite

Phosphogypsum (PG) is a pollutant residue resulting from the production of phosphoric acid in the phosphated fertilizers industry. About 180 millions of tons of PG are generated worldwide per year, which originates storage problems because of the environmental restrictions and the high costs of storage spaces. Taking into account the mineralizer properties of PG it has been studied a way to valorize this residue as an alternative material in the production of Portland cement clinker. The PG and the raw-materials (limestone, marl, sand and iron oxide) were chemical, mineralogical and thermally characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and differential thermal analysis and termogravimetric analysis (DTA/TGA). After milling, the phosphogypsum was mixed with the raw-materials in different amounts up to 10% weight. The raw mixtures were submitted to two types of firing schedules, heating up to 1500°C without any holding time or heating up to 1350°C and holding for 20 minutes. After firing, the clinkers were analyzed by optical microscopy, milled and characterized in terms of chemical and mineralogical compositions. The clinkers were used to produce cement mortar according to NP EN 196-1 standard. The resultant test specimens were mechanically tested at 2 and 28 days according to the same standard. The obtained results show a reduction of about 140°C in the clinkerization temperature, when a raw mixture with 5% phosphogypsum was used. Standard clinkers, without phosphogypsum addition, which were fired at 1500°C, originated test specimens with a compressive strength of 48.1MPa at 28 days. Test specimens produced with clinker containing 5% phosphogypsum present higher compressive strength values at 28 days, being 55.1MPa for clinkers produced at 1500°C, and 49.4 MPa for clinkers produced at 1350°C. © (2013) Trans Tech Publications, Switzerland.

Barbosa, A. R. J. a, A. A. S. a Lopes, S. I. H. a Sequeira, J. P. a Oliveira, A. b Davarpanah, F. b Mohseni, V. S. b Amaral, and R. C. C. a Monteiro. "Effect of processing conditions on the properties of recycled cathode ray tube glass foams." Journal of Porous Materials. 23 (2016): 1663-1669. AbstractWebsite

Cathode ray tube glass waste was used to produce glass foams by a powder sintering route. The glass waste powder was mixed with small amounts (5 and 8 wt%) of coal fly ash, which acted as foaming agent, and the compacts of the mixed powders were heated at different sintering temperatures in the range 600–800 °C for various dwell times (30–120 min). The effect of the different processing conditions on the microstructural characteristics (porosity, pore size and pore size distribution), mechanical resistance and thermal conductivity of the produced foams was investigated. The volume of pores tended to increase with sintering temperature and time, and glass foams (with a porosity higher than 50 %) were only achieved after sintering at 750 °C. The average pore size increased with sintering temperature and dwell time, and pore growth was particularly accentuated at 800 °C, where coalescence of the pores occurred, with a consequent decrease in compressive strength. Selected combinations of the sintering temperature, dwell time and foaming agent led to glass foams with a satisfactory microstructural homogeneity, which exhibited mechanical strength and thermal conductivity values similar to commercial foams used as thermal insulating materials. © 2016, Springer Science+Business Media New York.

F
Ferro, M. C., C. Leroy, R. C. C. Monteiro, and M. H. V. Fernandes. "Fine-grained glass-ceramics obtained by crystallisation of vitrified coal ashes." Key Engineering Materials. 230-232 (2002): 408-411. AbstractWebsite

Coal fly ashes have been vitrified by melting with Na2O and CaO as fluxing additives. Adequate heat treatments on the fly ash derived glass produced attractive dark green glass-ceramics. These glass-ceramics exhibited fine-grained microstructures consisting of esseneite and nepheline crystals, with average size below 200 nm, homogeneously dispersed in a residual glassy matrix. Several properties, such as density, thermal expansion coefficient, bending strength, hardness and brittleness index were determined and the correlation microstructure-properties is discussed. The results suggest that these coal ash-based glass-ceramics have potential applications as structural materials or as cladding materials.

Kullberg, A. T. G., A. A. S. Lopes, J. P. B. Veiga, M. M. R. A. Lima, and R. C. C. Monteiro. "Formation and crystallization of zinc borosilicate glasses: Influence of the ZnO/B2O3 ratio." Journal of Non-Crystalline Solids. 441 (2016): 79-85. AbstractWebsite

Different glasses based on the ZnO-B2O3-SiO2 system, with a ZnO content ≥ 60 mol% and a fixed SiO2 content (20 mol%), were synthesised using a melt-quenching method. Glass samples with zinc oxide concentrations as high as 65 mol% were prepared successfully without deteriorating the glass-forming ability. The glass samples were submitted to controlled heat-treatments, and the effect of the ZnO/B2O3 molar ratio on the formation of crystalline phases within the glass matrix was investigated by means of differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). DTA results indicated that the glass transition and the onset crystallization temperatures of the studied glasses tended to increase with the increment on the ZnO/B2O3 ratio. XRD data showed that the zinc binary crystalline phases, willemite (Zn2SiO4), a zinc orthosilicate, and zinc borate (Zn3B2O6) could be present in the crystallized glasses, depending on the heat-treatment conditions. The formation of willemite was promoted by an increasing ZnO/B2O3 ratio. Microstructural observations performed by SEM indicated that under controlled experimental parameters (glass composition, heat-treatment temperature and time) the precipitation of nanocrystals within the glass matrix can be achieved, resulting in transparent and translucent willemite glass-ceramics. © 2016 Elsevier B.V. All rights reserved.

G
Lopes, A. A. S., R. S. Soares, M. M. A. Lima, and R. C. C. Monteiro. "Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method." Journal of Applied Physics. 115 (2014). AbstractWebsite

The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B2O3-10SiO2were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (Tg) and of the maximum crystallization temperature (Tp) on the heating rate was used to determine the activation energy associated with the glass transition (Eg), the activation energy for crystallization (Ec), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB2O4) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba5Si8O21). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (Ec(χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures. © 2014 AIP Publishing LLC.

L
Lapa, N. a, R. a Barbosa, S. a Camacho, R. C. C. b Monteiro, M. H. V. c Fernandes, and J. S. a Oliveira. "Leaching behaviour of a glass produced from a MSWI bottom ash." Materials Science Forum. 514-516 (2006): 1736-1741. AbstractWebsite

This paper is mainly focused on the characterisation of a glass material (GM) obtained from the thermal treatment of a bottom ash (BA) produced at the Municipal Solid Waste (MSW) incineration plant of Valorsul. By melting the BA at 1400°C during 2 hours, and without using any chemical additives, a homogeneous black-coloured glass was obtained. The thermal and mechanical properties of this glass were characterised. The thermal expansion coefficient, measured by dilatometry, was 9-10 × 10-6 per °C and the modulus of rupture, determined by four-point bending test, was 75±6 MPa, which are similar values to those exhibited by commercial soda-lime-silica glasses used in structural applications. The chemical and the ecotoxicological leaching behaviour of the GM were also analysed. The GM was submitted to a leaching procedure composed of 15 sequential extraction cycles. A liquid/solid (L/S) ratio of 2 1/kg was applied in each cycle. The leachates were filtered through a membrane of PTFE (porosity: 0.45 μm). The filtered leachates were characterised for different chemical parameters and for an ecotoxicological indicator (bacterium Vibrio fischeri). The GM was also submitted to a microwave acidic digestion for the assessment of the total metal content. The crude BA was also submitted to the same experimental procedures. The GM showed levels of chemical emission and ecotoxicity for V. fischeri much lower than those determined for the crude BA. Similar characterisation studies will be pursued with the glass-ceramics produced by adequate thermal treatment of the glass, in order to investigate the effect of the crystallization on the final properties.

M
Monteiro, R. C. C., M. M. R. A. Lima, and S. Alves. "Mechanical characteristics of clay structural ceramics containing coal fly ash." International Journal of Mechanics and Materials in Design. 4 (2008): 213-220. AbstractWebsite

In this work, the mechanical characterization of ceramic products processed from red clay with different amounts of added coal fly ash was investigated. Coal fly ash produced by power plants is a waste material that constitutes an alternative source of minerals for the production of traditional building ceramics, as it is a complex mixture of several oxides such as SiO2, Al2O3, CaO, Fe2O3, Na2O, TiO2, which are usually present in the composition of such ceramics. A powder technology and firing route was followed for the processing of the clay and coal fly ash based ceramics. Different proportions of waste (10, 25 and 50%, by weight) were added to red clay, and then the mixed powders were pressed to form compacts that were fired at a selected temperature in the range 850-1,150°C. The effects of waste content and of heating conditions on the microstructure and mechanical characteristics of the obtained materials were investigated. The density, porosity, water absorption, flexural strength, hardness and fracture toughness of the produced materials were evaluated. A comparison was made between the properties of the produced ceramics with those of traditional ceramic materials used in construction, e.g. floor or wall tiles, and it was observed that the clay based products with coal fly ash additions may be used in similar applications. © 2007 Springer Science+Business Media B.V.

P
Soares, R. S. a, R. C. C. a Monteiro, M. M. R. A. a Lima, B. A. b Sava, and M. b Elisa. "Phase transformation and microstructural evolution after heat treatment of a terbium-doped lithium-aluminum phosphate glass." Journal of Materials Science. 49 (2014): 4601-4611. AbstractWebsite

The crystallization kinetics and phase transformation of a transparent Tb3+-doped lithium-aluminum phosphate glass, prepared by melt quenching, were investigated. The energy associated to the glass transition and the crystallization parameters (activation energy for crystallization and Avrami exponent) were evaluated by different methods using the experimental data obtained by differential thermal analysis performed at different heating rates. Using an isoconversional method to determine the change of the activation energy for crystallization with the fraction of crystallization, it was verified that with the increase in the fraction of crystallization from 0.1 to 0.9, the value of the activation energy decreased slightly from  370 to  310 kJ mol -1 and that the Avrami exponent varied from 0.8 to 1, suggesting a surface crystal growth mechanism. Observation of the microstructural evolution of heat-treated glass samples confirmed a surface crystallization process revealing spherulitic crystals constituted mainly by aluminum metaphosphate. © 2014 Springer Science+Business Media New York.

Leroy, C. a, M. C. a Ferro, R. C. C. b Monteiro, and M. H. V. a Fernandes. "Production of glass-ceramics from coal ashes." Journal of the European Ceramic Society. 21 (2001): 195-202. AbstractWebsite

Coal fly ashes produced by an extinguished power plant in the north of Portugal have been melted with addition of CaCO3 and Na2CO3 to obtain glasses. One of the formulated compositions was selected for further studies and it was possible to manufacture glass-ceramics by crystallizing the parent glass through adequate time-temperature schedules. The macroscopic appearance, microstructure, mechanical, thermal and chemical properties indicated that these materials are quite attractive for cladding applications, exhibiting in some cases better performances than the conventional ceramic tiles.

S
Lima, M. M. R. A., and R. C. C. Monteiro. "Shrinkage behaviour of borosilicate glass-Al2O3 composites during isothermal sintering." Materials Science Forum. 514-516 (2006): 648-652. AbstractWebsite

The effect of rigid inclusions on the densification during isothermal sintering of glass matrix composites was investigated. Mixtures containing borosilicate glass powder and 0, 5, 10 and 25 vol. % alumina (Al 2O3) particles were prepared and powder compacts isostatically pressed at 200 MPa have been used. The sintering behaviour of the samples heated at 800°C during various times was investigated through density measurement, axial and radial shrinkage measurements. The microstructure was analysed by SEM and the crystalline phases present in the sintered composites were identified by XRD. The relative density of the isothermally treated borosilicate glass-Al2O3 composites decreased significantly with the increase in Al2O3 content because the presence of rigid inclusions retarded the densification of the compacts. The borosilicate glass exhibited anisotropic shrinkage behaviour, showing a radial shrinkage higher than the axial shrinkage and isotropic shrinkage was favoured by Al2O3 additions. Sintered glass showed a dense microstructure with some spherical closed pores. The microstructure of composites with 5 vol. % Al2O3 revealed that most of the pores were filled by capillary flow of the glass. The microstructure of composites with higher Al2O3 additions showed dense areas together with interconnected pores, which appeared at the sites of large glass particles in the green compacts.

Monteiro, R. C. C. a, A. A. S. a Lopes, M. M. A. a Lima, J. P. a Veiga, R. J. C. a Silva, C. J. a Dias, E. J. R. b Davim, and M. H. V. b Fernandes. "Sintering, crystallization, and dielectric behavior of barium zinc borosilicate glasses-Effect of barium oxide substitution for zinc oxide." Journal of the American Ceramic Society. 95 (2012): 3144-3150. AbstractWebsite

Barium zinc borosilicate glasses with a molar composition xBaO-(60-x)ZnO-30B 2O 3-10SiO 2, where x ranged from 0 to 60 mol%, were prepared using melt-quenching method. The effect of BaO substitution for ZnO on the sintering, crystallization, and dielectric characteristics has been investigated. The behavior of the studied barium zinc borosilicate glasses was mainly determined by the relative amount of the structural modifier oxides (BaO and ZnO) and the ionic size, and field strength of the modifying cations (Ba 2+, Zn 2+). Increased amounts of BaO decreased both glass transition temperature and crystallization temperature, while increasing the relative dielectric constant. Sintering occurred before crystallization for glasses where substitution of BaO for ZnO was up to 30 mol%, but for higher substitution levels, crystallization occurred during the sintering process hindering densification. © 2012 The American Ceramic Society.

Lima, M. M. R. A. a, R. C. C. a Monteiro, M. P. F. b Graça, and M. G. c Ferreira Da Silva. "Structural, electrical and thermal properties of borosilicate glass-alumina composites." Journal of Alloys and Compounds. 538 (2012): 66-72. AbstractWebsite

Borosilicate glass-alumina composites with (1 - x) Glass + x Al 2O 3 (x = 0, 5, 10, 25 vol.%) were prepared and the effect of Al 2O 3 addition on the structural, electrical and thermal characteristics was investigated. XRD patterns revealed the presence of cristobalite (SiO 2) in sintered borosilicate glass and that the addition of Al 2O 3 hinders cristobalite formation. This behavior is due to the diffusion of some Al 3+ ions from alumina to glass, which leads to changes in glass structure and composition as identified by SEM/EDS. Cristobalite was undetected in composites containing 10% Al 2O 3 that attained the lowest thermal expansion coefficient value (∼4.6 × 10 -6 °C -1). Conductivity (dc and ac) increased with the amount of Al 3+ ions present in the glass structure as modifiers and formers. Dielectric constant values, in the range 5.0-7.2, increased with Al 2O 3 addition and the values of loss tan δ (1.5-2.1 × 10 -2) indicate that these materials are good insulators. © 2012 Elsevier B.V. All rights reserved.

Lima, M. M. R. A., F. M. Braz Fernandes, and R. C. C. Monteiro. "Study of the crystallization of a borosilicate glass." Key Engineering Materials. 230-232 (2002): 157-160. AbstractWebsite

The crystallization of a commercial borosilicate glass powder has been studied in the temperature range 750-900°C. Crystal growth was investigated by high temperature XRD and cristobalite precipitation was identified. Glass devitrification exhibited a characteristic incubation period that decreased with increasing temperature: 25-30 min at 750°C, 9-12 min at 775°C, 5-10 min at 810°C, and 0-5 min at 840°C. Cristobalite is an unfavorable transformation product in terms of thermal expansion behavior. The precipitation of cristobalite in sintered glass compacts was confirmed by dilatometric analysis, where the increase in thermal expansion coefficient due to the presence of cristobalite and its transition from the tetragonal to the cubic phase were verified. Correlation between the XRD results and the dilatometric data from sintered glass compacts showed the partial dissolution of cristobalite when the glass was heated at the highest temperatures.

Lopes, A., P. Nunes, P. Vilarinho, R. Monteiro, E. Fortunato, and R. Martins. "Study of the sensing mechanism of SnO2 thin-film gas sensors using hall effect measurements." Key Engineering Materials. 230-232 (2002): 357-360. AbstractWebsite

Hall effect measurements are one of the most powerful techniques for obtaining information about the conduction mechanism in polycrystalline semiconductor materials, which is the basis for understanding semiconductor gas sensors. In order to investigate the correlation between the microscopic characteristics and the macroscopic performances exhibited by undoped tin oxide gas sensors deposited by spray pyrolysis, Hall effect measurements were performed at different temperatures, from room temperature up to 500 K, and in the presence of two different atmospheres, air and methane. From these measurements, it was possible to infer the potential barrier and its dependence with the used atmosphere. The obtained results were analysed in terms of the oxygen mechanism at grain boundaries on the basis of the grain boundary-trapping model. In the presence of methane gas, the electrical resistivity decreases due to the lowering of the inter-grain boundary barrier height.