Export 1830 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Lopes, A. C., E. B. Rodrigues, and R. Vera-Cruz. "Tourism Gentrification." IOP Conference Series: Materials Science and Engineering. 2019.
Gouveia, Nuno D., Duarte M. V. Faria, and António Pinho Ramos. "Assessment of SFRC flat slab punching behaviour – part I: monotonic vertical loading." Magazine of Concrete Research. 71 (2019): 587-598. AbstractWebsite

This paper presents a study of the behaviour and load capacity of steel-fibre-reinforced concrete (SFRC) flat slabs under monotonically increased concentrated vertical loads. The SFRC was used only in the local region of the slab–column connection, as the rest of the slab was cast using normal concrete without fibres. The six experimental test specimens had a thickness of 150 mm with different longitudinal reinforcement ratios, using a non-uniform distribution over the slab width. The concretes used were made with different Dramix 4D 65/60 BG steel fibre contents (0, 0·5, 0·75 and 1·0% volume content). The slab tests were complemented by flexural tests on notched beams. This made it possible to determine the tension behaviour of the different concretes used, through a linear post-cracking behaviour and inverse analysis. The inverse analysis made it possible to define the stress–crack opening relationship that characterises the tension behaviour of SFRC and to relate it to the observed behaviour and load capacity of the tested slabs. The tests results show that the tensile behaviour of the SFRC plays an important role in the behavioural and load capacity of the slabs and that it can be considered relevant to physically based models.

Gouveia, Nuno D., Duarte M. V. Faria, and António Pinho Ramos. "Assessment of SFRC flat slab punching behaviour – part II: reversed horizontal cyclic loading." Magazine of Concrete Research. 71 (2019): 26-42. AbstractWebsite

This paper presents an experimental study of four flat slab specimens subjected to combined vertical and horizontal cyclic loading. Steel fibre-reinforced concrete (SFRC) was used only in the local region of the slab–column connection, while the rest of the slabs were cast using normal concrete. The specimens measured 4·15 m × 1·85 m × 0·15 m and were connected to two steel half columns by 0·25 m × 0·25 m rigid steel plates, prestressed against the slab using steel bolts, to ensure monolithic behaviour. The specimens were tested using an innovative test setup system that accounted for important factors, such as the ability of bending moment redistribution, line of inflection mobility and assured equal vertical displacements at the opposite slab borders, and symmetrical shear forces. Results show that the presence of SFRC in the slab–column connection region is effective in increasing the deformation capacity of slab–column connections, allowing the increase of horizontal drift ratios.

Torabian, Ala, Brisid Isufi, Davood Mostofinejad, and António Pinho Ramos. "Behavior of thin lightly reinforced flat slabs under concentric loading." Engineering Structures. 196 (2019): 109327. AbstractWebsite

The current research aims to study the behavior of thin reinforced concrete (RC) slabs under concentrated loads as well as to investigate the application of Critical Shear Crack Theory (CSCT) to such slabs. For this purpose, four square 100-mm-thick slabs were cast and subjected to concentrated punching monotonic loading. The experimental parameters were the flexural reinforcement ratio, 0.38% and 1.00%, and the presence or absence of shear headed stud reinforcement. It is shown that the failure criteria of CSCT describe reasonably well the observed failure modes and the ultimate loads of the specimens. However, attention is brought to some peculiarities in the analytical derivation of the load-rotation curve for thin lightly reinforced flat slabs, in which large deformations are experienced. Results showed that in such slabs, the behavior can be highly influenced by the post-yield stress-strain curve of the flexural steel reinforcement. As a result, the constitutive law of steel reinforcement should be explicitly taken into account in such cases. The versatility of CSCT to adapt to these conditions is demonstrated.

Teubig, P., P. Remmels, P. Klenze, H. Alvarez-Pol, E. Alves, J. M. Boillos, P. Cabanelas, R. C. da Silva, D. Cortina-Gil, J. Cruz, D. Ferreira, M. Fonseca, D. Galaviz, E. Galiana, R. Gernhäuser, D. González, A. Henriques, A. P. Jesus, H. Luís, J. Machado, L. Peralta, J. Rocha, A. M. Sánchez-Benítez, H. Silva, and P. Velho. "Challenging the Calorimeter CALIFA for FAIR Using High Energetic Photons." Eds. José-Enrique García-Ramos, María V. Andrés, José Lay A. Valera, Antonio M. Moro, and Francisco Pérez-Bernal. Cham: Basic Concepts in Nuclear Physics: Theory, Experiments and Applications, 2019. 245-246. Abstract
n/a
Al-Saadi, M., S. Valtchev, L. Romba, J. Gon?alves, and A. Cr?ciunescu. "Comparison of Spiral and Square Coil Configurations in Wireless Power Transfer System for Contactless Battery Charging." 2019 Electric Vehicles International Conference, EV 2019 (2019). Abstract
n/a
Azanza, Moreno M., R. Coimbra, E. Puértolas-Pascual, J. Russo, B. Bauluz, and O. Mateus Crystallography of Lourinhanosaurus eggshells (Dinosauria, Theropoda, Allosauroidea). Journal of Vertebrate Paleontology, Program and Abstracts., 2019. Abstract
n/a
Romba, Luis, and Stan Valtchev. "Efficiency Improvement in Wireless Power System." Emerging Capabilities and Applications of Wireless Power Transfer. IGI Global, 2019. 23-48. Abstract

This chapter focuses on mid-range wireless power transfer (WPT) systems applied to electric vehicle (EV) battery chargers. The WPT is recently considered as an efficient electric energy transfer process between two or more points in space, without wiring. The technology associated with each specific process of WPT differs from case to case depending on the distance between those points and the power to be transferred between them. The widely adopted distance categories are named short-range, mid-range, and long-range. The short-range is normally defined as up to a few millimeters range. The mid-range is between a few millimeters and a few meters. The long-range distance is defined as a longer than that of the previous category, stretching up to a few kilometers.

Baikova, {Elena N. }, Luis Romba, and Stan Valtchev. "Electromagnetic Influence of WPT on Human's Health: Modelling, Simulation, and Measurement." Emerging Capabilities and Applications of Wireless Power Transfer. IGI Global, 2019. 141-161. Abstract

The focus of this chapter is the electromagnetic interference (EMI) and the electromagnetic compatibility (EMC) that the wireless power transfer (WPT) systems reveal as problems. The wireless power transfer (WPT) was introduced by Nikola Tesla more than one hundred years ago, and only recently it attracted the attention of specialists, due to the improved technical means. The WPT technology now has many applications, especially for charging of various electronic devices (i.e., mobile phones, laptops, implants, and home appliances), informatics, and electronics equipment. The high-power equipment and installations (e.g., intelligent machining systems, robots, forklift trucks, and electric cars) are also getting wireless. Moreover, much attention has been focused on the electric transportation system for improving the safe and convenient charging of electric vehicle (EV) batteries.

Rebelo, H. B., F. Amarante dos Santos, C. Cismaşiu, and D. Santos. "Exploratory study on geodesic domes under blast loads." International Journal of Protective Structures. 10 (2019): 439-456. AbstractWebsite
n/a
Secci, L., E. Teoni, M. Lapi, M. Orlando, and a Ramos. "Finite element analysis of punching shear of R/C slabs: A hybrid approach for model calibration." Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures. 2019. 643-650. Abstract
n/a
Mateus, Octávio, Pedro M. Callapez, Michael J. Polcyn, Anne S. Schulp, António Olímpio Gonçalves, and Louis L. Jacobs. "The Fossil Record of Biodiversity in Angola Through Time: A Paleontological Perspective." Biodiversity of Angola: Science {&} Conservation: A Modern Synthesis. Eds. Brian J. Huntley, Vladimir Russo, Fernanda Lages, and Nuno Ferrand. Cham: Springer International Publishing, 2019. 53-76. Abstract

This chapter provides an overview of the alpha paleobiodiversity of Angola based on the available fossil record that is limited to the sedimentary rocks, ranging in age from Precambrian to the present. The geological period with the highest paleobiodiversity in the Angolan fossil record is the Cretaceous, with more than 80{%} of the total known fossil taxa, especially marine molluscs, including ammonites as a majority among them. The vertebrates represent about 15{%} of the known fauna and about one tenth of them are species firstly described based on specimens from Angola.

Silva, TEF, S. Gain, D. Pinto, A. M. P. de Jesus, J. Xavier, A. Reis, and P. A. R. Rosa. "Fracture characterization of a cast aluminum alloy aiming machining simulation." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 233 (2019): 402-412. AbstractWebsite

Despite extensive research regarding metal cutting simulation, the current industrial practice very often relies on empirical data when it comes to tool design. In order accurately simulate the cutting process it is not only important to have robust numerical models that closely portray the phenomenon, but also to properly characterize the material taking into account the cutting conditions. The goal of this investigation focuses on the mechanical characterization of the cast aluminum alloy AlSi9Cu3 by conducting both compression and fracture tests. Due to its very good castability, machinability, and attractive mechanical properties, this alloy is widely used in casting industry for the manufacture of automotive components, among others. Besides the experimental characterization, a numerical methodology is proposed for the modeling of the cast alloy, making use of the Johnson–Cook constitutive material model, in Abaqus/CAE. The material model is calibrated based on compression tests at multiple conditions (quasi-static, incremental dynamic and high temperatures). The identified model is then validated by simulation of the ductile fracture tests of notched specimens. The obtained numerical results were consistent with the experimentally obtained, contributing to the validity of the presented characterization technique.

Russo, J., and O. Mateus A new Ankylosaur Dinosaur Skeleton from the Upper Jurassic of Portugal. Journal of Vertebrate Paleontology, Program and Abstracts., 2019. Abstract
n/a
Silva, M. A. G., H. Biscaia, and P. Ribeiro. "On factors affecting CFRP-steel bonded joints." Construction and Building Materials. 226 (2019): 360-375. AbstractWebsite

Failure of structural steel members strengthened with Carbon Fibre Reinforced Polymers (CFRP) may occur at the joints CFRP-steel and this study examines variables that alter or explain the corresponding reduction of load capacity for a specific CFRP laminate, adhesive and steel. Factors and parameters likely to be influential like surface treatment prior to bonding, the bonded length, the glass transition temperature (Tg) of the adhesive, the exposure to aggressive environment, the temperature at service and different types of loading were examined. The experimental program selected double strap CFRP-steel bonded joints under shear for the analysis. The steel surfaces to be bonded were subjected to sand blasting (6.3 bar) or abrasive grinding (6.9 bar) corresponding to thorough blast cleaning Sa2; surfaces rusted after exposure to salt fog at 35 °C were also considered. Differences detected in responses of specimens treated by sand or steel spheres blasting were relatively minor. Tests made at increasing ambient temperatures confirmed that service temperature near and above adhesive Tg caused rapid deterioration of ultimate capacity and change of failure modes. Salt fog cycles (SF) originated the most significant losses of joint capacity. Application of cyclic static loading above the critical loading threshold obtained for unaged joints did not reduce the capacity of joints previously aged by freeze-thaw. The same cyclic loading after salt fog cycles, reduced bond capacity and increase the ultimate slip, suggesting larger effective length. Despite the losses of capacity, microscopic changes of structural nature could not be identified. © 2019 Elsevier Ltd

Isufi, B., V. Lúcio, and A. P. Ramos. "Post-earthquake strength and deformation capacity of a flat slab specimen with shear studs." Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures. 2019. 1684-1691. Abstract
n/a
Isufi, Brisid, António Pinho Ramos, and Válter Lúcio. "Reversed horizontal cyclic loading tests of flat slab specimens with studs as shear reinforcement." Structural Concrete. 20 (2019): 330-347. AbstractWebsite

The results of a series of experiments on four reinforced concrete flat slab specimens with shear studs and a control specimen without any shear reinforcement are presented. The specimens were tested under constant gravity loads and reversed horizontal cyclic displacements. The main test variables were the applied gravity load and the number of perimeters of studs. One of the specimens was tested in two phases to study the postearthquake behavior. Results showed a considerable improvement of the deformation capacity of specimens with studs compared to the reference specimen. In agreement with previous research, increasing the applied gravity shear ratio resulted in a lower experimental drift capacity. It is shown that a better explanation of the observed ultimate drifts can be made by considering also the flexural capacity and the extent of shear reinforcement. The specimen tested in two phases exhibited considerable residual capacity, even after severe horizontal loading.

Lapi, M., M. Orlando, P. Spinelli, and a Ramos. "Static and seismic behaviour of R/C slabs with openings adjacent to columns." Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures. 2019. 1795-1802. Abstract
n/a
Biscaia, H. C., and P. Ribeiro. "A temperature-dependent bond-slip model for CFRP-to-steel joints." Composite Structures. 217 (2019): 186-205. AbstractWebsite

It is supposed that the adhesively bonded structures would perform well during their lifetime, but the action of high temperatures may affect the initial integrity of the joints, as recognized by some researchers. Still, there are few studies proposing a model to locally predict the interfacial bond behaviour of Carbon Fibre Reinforced Polymers (CFRP) bonded to a steel substrate when subjected to temperature changes. The influence of temperature on CFRP-to-steel bonded joints is, therefore, not very well understood yet and more studies are needed to better understand how these joints behave under such circumstances. The present work aims to contribute to the mitigation of the existing lack of knowledge on the performance of CFRP-to-steel bonded joints under high temperatures. Therefore, an experimental program was considered and specimens were tested at different temperatures: 20 °C, 35 °C, 50 °C, 65 °C, 80 °C, and 95 °C. To help the interpretation of the results, an analytical model is proposed to predict the load capacity of the CFRP-to-steel joints. The local bond-slip behaviour of the tested specimens is also analyzed and, based on a literature review, a temperature-dependent bond-slip model with a bi-linear shape is proposed and implemented into a commercial software based on the Finite Element Method (FEM). © 2019 Elsevier Ltd

Araújo, João, Michael Kinyon, and Yves Robert. "Varieties of regular semigroups with uniquely defined inversion." Port. Math.. 76 (2019): 205-228. AbstractWebsite
n/a
Rovisco, Ana, Rita Branquinho, Jorge Martins, Elvira Fortunato, Rodrigo Martins, and Pedro Barquinha. "{Growth Mechanism of Seed-Layer Free ZnSnO3 Nanowires: Effect of Physical Parameters}." Nanomaterials. 9 (2019): 1002. Abstract

ZnSnO3 semiconductor nanostructures have several applications as photocatalysis, gas sensors, and energy harvesting. However, due to its multicomponent nature, the synthesis is far more complex than its binary counter parts. The complexity increases even more when aiming for low-cost and low-temperature processes as in hydrothermal methods. Knowing in detail the influence of all the parameters involved in these processes is imperative, in order to properly control the synthesis to achieve the desired final product. Thus, this paper presents a study of the influence of the physical parameters involved in the hydrothermal synthesis of ZnSnO3 nanowires, namely volume, reaction time, and process temperature. Based on this study a growth mechanism for the complex Zn:Sn:O system is proposed. Two zinc precursors, zinc chloride and zinc acetate, were studied, showing that although the growth mechanism is inherent to the material itself, the chemical reactions for different conditions need to be considered.

Freitas, João Correia, Fernando Egídio Reis, Vítor Godinho Lopes, and David Costa. "A {Khan} {Academy} em {Portugal}, o ensino e aprendizagem da {Matemática} e a {Formação} de {Professores} - um contributo da {EDUCOM}." Educação e Matemática (2019): 5. Abstract
n/a
Holl, M., V. Panin, H. Alvarez-Pol, L. Atar, T. Aumann, S. Beceiro-Novo, J. Benlliure, C. A. Bertulani, J. M. Boillos, K. Boretzky, M. Caamano, C. Caesar, E. Casarejos, W. Catford, J. Cederkäll, L. Chulkov, D. Cortina-Gil, E. Cravo, I. Dillmann, Diaz P. Fernandez, Z. Elekes, J. Enders, L. M. Fraile, Galaviz D. Redondo, R. Gernhäuser, P. Golubev, T. Heftrich, M. Heil, M. Heine, A. Heinz, A. Henriques, H. T. Johansson, B. Jonson, N. Kalantar-Nayestanaki, R. Kanungo, A. Kelic-Heil, T. Kröll, N. Kurz, C. Langer, T. Le Bleis, S. Lindberg, J. Machado, E. Nacher, M. A. Najafi, T. Nilsson, C. Nociforo, S. Paschalis, M. Petri, R. Reifarth, G. Ribeiro, C. Rigollet, D. M. Rossi, D. Savran, H. Scheit, H. Simon, O. Sorlin, I. Syndikus, O. Tengblad, Y. Togano, M. Vandebrouck, P. Velho, F. Wamers, H. Weick, C. Wheldon, G. L. Wilson, J. S. Winfield, P. Woods, M. Zhukov, K. Zuber, and R. 3B. collaboration. "{Quasi-free neutron and proton knockout reactions from light nuclei in a wide neutron-to-proton asymmetry range}." Physics Letters B. 795 (2019): 682-688. AbstractWebsite

Physics Letters B, 795 (2019) 682–688. 10.1016/j.physletb.2019.06.069

2018
Carvalho, Ana Luísa, Teresa Santos-Silva, Maria João Romão, J. Eurico, and Filipa Marcelo. "{CHAPTER 2 Structural Elucidation of Macromolecules}." Essential Techniques for Medical and Life Scientists: A Guide to Contemporary Methods and Current Applications with the Protocols. BENTHAM SCIENCE PUBLISHERS, 2018. 30-91. Abstract

n/a

Cardoso, P., T. C. Mateus, G. Velu, R. P. Singh, J. P. Santos, M. L. Carvalho, V. M. Louren{\c c}o, F. Lidon, F. Reboredo, and M. Guerra. "Localization and distribution of Zn and Fe in grains of biofortified bread wheat lines through micro- and triaxial-X-ray fluorescence spectrometry." Spectrochim. Acta Part B. 141 (2018): 70-79. Abstract

n/a